Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=1-8x-x^2=-\left(x^2+8x+16\right)+17=-\left(x-4\right)^2+17\le17\)
\(ĐTXR\Leftrightarrow x=4\)
b) \(B=5-2x+x^2=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
\(ĐTXR\Leftrightarrow x=1\)
c) \(C=x^2+4y^2-6x+8y-2021=\left(x^2-6y+9\right)+\left(4y^2+8y+4\right)-2034=\left(x-3\right)^2+\left(2y+2\right)^2-2034\ge-2034\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
a: Ta có: \(A=-x^2-8x+1\)
\(=-\left(x^2+8x-1\right)\)
\(=-\left(x^2+8x+16-17\right)\)
\(=-\left(x+4\right)^2+17\le17\forall x\)
Dấu '=' xảy ra khi x=-4
b: Ta có: \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
\(A=x-x^2=-\left(x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(\left(x-\frac{1}{2}\right)^2\ge0\)
\(\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
\(-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\le\frac{1}{4}\)
Vậy Max A = \(\frac{1}{4}\) khi x = \(\frac{1}{2}\)
***
\(B=5-8x-x^2=-\left(x^2+2\times x\times4+4^2-4^2-5\right)=-\left[\left(x+4\right)^2-21\right]\)
\(\left(x+4\right)^2\ge0\)
\(\left(x+4\right)^2-21\ge-21\)
\(-\left[\left(x+4\right)^2-21\right]\le21\)
Vậy Max B = 21 khi x = - 4
***
\(C=5-x^2+2x-4y^2-4y=-\left(x^2-2\times x\times1+1^2-1^2+\left(2y\right)^2-2\times2y\times1+1^2-1^2-5\right)=-\left[\left(x-1\right)^2+\left(2y-1\right)^2-7\right]\)
\(\left(x-1\right)^2\ge0\)
\(\left(2y-1\right)^2\ge0\)
\(\left(x-1\right)^2+\left(2y-1\right)^2-7\ge-7\)
\(-\left[\left(x-1\right)^2+\left(2y-1\right)^2-7\right]\le7\)
Vậy Max C = 7 khi x = 1 và y = \(\frac{1}{2}\)
A=-(x2+8x+16)+21<=21 (tự làm tiếp)
B=-(x2-2x+1)-(4y2+4y+1)+7
=-(x-1)2-(2y+1)2+7<=7
\(A=5-8x-x^2\)
\(A=-x^2-8x+5\)
\(-A=x^2+8x-5\)
\(-A=x^2+4x+4x+16-21\)
\(-A=x.\left(x+4\right)+4.\left(x+4\right)-21\)
\(-A=\left(x+4\right).\left(x+4\right)-21\)
\(A=-\left(x+4\right)^2-21\le-21\)
Dấu = xảy ra khi A = -21 \(\Leftrightarrow-\left(x+4\right)^2-21=-21\)
\(\Leftrightarrow-\left(x+4\right)^2=0\Rightarrow x+4=0\Rightarrow x=-4\)
a, \(A=-\left(x^2+8x+16-16\right)+5=-\left(x+4\right)^2+21\le21\forall x\)
Dấu ''='' xảy ra khi x = - 4
Vậy GTLN của A là 21 tại x = -4
b, \(B=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\forall x;y\)
Dấu ''='' xảy ra khi x = 1 ; y = -1/2
Vậy GTLN của B là 7 tại x = 1 ; y = -1/2
a: \(A=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21< =21\)
Dấu '=' xảy ra khi x=-4
b: \(B=-\left(x^2-2x+4y^2+4y-5\right)\)
\(=-\left(x^2-2x+1+4y^2+4y+1-7\right)\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu '=' xảy ra khi x=1 và y=-1/2
\(A=5-8x-x^2\)
=\(-\left(x^2+8x+16\right)+21\)
=\(21-\left(x+4\right)^2\)
Với mọi x thì \(\left(x+4\right)^2>=0\)
=>\(21-\left(x+4\right)^2\)=<21
Hay A=<21
Để A=21 thì \(\left(x+4\right)^2=0\)
=>\(x+4=0\)
=>\(x=-4\)
Vậy...
\(B=5-x^2+2x-4y^2-4y\)
=\(-\left(x+1\right)^2-\left(2y+1\right)^2+7\)
Với mọi x thì \(\left(x+1\right)^2>=0;\left(2y+1\right)^2>=0\)
=>\(-\left(x+1\right)^2-\left(2y+1\right)^2+7\)=<7
Hay A=<7
Để A=7 thì \(\left(x+1\right)^2=0\) và \(\left(2y+1\right)^2=\)
=>...
=>\(x=-1\) và \(y=-\dfrac{1}{2}\)
Vậy...
Câu c dễ rồi
Bn đánh giá trong trị là ra
A=\(5-8x-x^2=-\left(x^2+8x+16\right)+16+5\)
=\(21-\left(x+4\right)^2\)<=21
dấu = xảy ra khi x=-4
=> GTLN A=21 khi x=-4
b) \(5-x^2+2x-4y^2-4y\)
=\(-\left(x^2-2x+1\right)-\left(4y^4+4y+1\right)-2+5\)
=\(3-\left(x-1\right)^2-\left(2y-1\right)^2\)<=3
daaus bằng xảy ra khi x=1 và y=1/2
=> GTLN B=3 khi x=1 và y=1/2
Chào!