
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5

a) gtnn bạn ạ
GTNN A= -4 vì 2/3x-1/ >= 0
b) gtln bạn ạ
GTLN B = 10 vì 4/x-2/ >=0

\(\left|x+1,5\right|\ge0\forall x\)
Dấu " = " xảy ra khi
| x + 1,5 | = 0
x = -1,5
Vậy MinA = 0 <=> x = -1,5
b)
\(\left|x-2\right|\ge0\forall x\Rightarrow\left|x-2\right|-\frac{9}{10}\ge\frac{9}{10}\forall x\)
Dấu " = " xảy ra khi
| x - 2 | = 0
x = 2
Vậy MinA = \(\frac{9}{10}\)<=> x = 2
\(-\left|2x-1\right|\le0\forall x\)
Dấu " = " xảy ra khi :
- | 2x - 1 | = 0
=> x = \(\frac{1}{2}\)
Vậy MaxA = 0 <=> x = \(\frac{1}{2}\)
b)
\(-\left|5x-3\right|\le0\forall x\Rightarrow4-\left|5x-3\right|\le4\)
Dấu " = " xảy ra khi :
- | 5x - 3 | = 0
=> x = \(\frac{3}{5}\)
Vậy MaxB = 4 <=> x = \(\frac{3}{5}\)
Study well
ta có: (y^2 -25) ^4 >= 0
suy ra -2*(y^2 -25) ^4 <=0
suy ra -2*(y^2 -25) ^4+ 10 <=10
vậy GTLN là 10 khi y^2 =25 <=> y=+-5
\(A=10-2\left(y^2-25\right)^4\)
\(=10-2\left[\left(y^2-25\right)^2\right]^2\)
Ta có : \(\left(y^2-25\right)^2\ge0\forall y\)
=> \(\left[\left(y^2-25\right)^2\right]^2\ge0\forall y\)
=> \(-2\left[\left(y^2-25\right)^2\right]^2\le0\forall y\)
=> \(10-2\left[\left(y^2-25\right)^2\right]^2\le10\)
Dấu = xảy ra <=> \(10-2\left[\left(y^2-25\right)^2\right]^2=10\)
<=> \(y^2-25=0\)
<=> \(y^2=25\)
<=> \(\orbr{\begin{cases}y=5\\y=-5\end{cases}}\)
Vậy MaxA = 10 với y = \(\pm\)5