\(E=-x^2+2xy-4y^2+2x+10y+5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 10 2020

\(E=-\left(x^2+y^2+1-2xy-2x+2y\right)-\left(3y^2-12y+12\right)+18\)

\(E=-\left(x-y-1\right)^2-3\left(y-2\right)^2+18\le18\)

\(E_{max}=18\) khi \(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

19 tháng 10 2022

\(D=-5\left(x^2+\dfrac{4}{5}x+\dfrac{1}{5}\right)\)

\(=-5\left(x^2+2\cdot x\cdot\dfrac{2}{5}+\dfrac{4}{25}+\dfrac{1}{25}\right)\)

\(=-5\left(x+\dfrac{2}{5}\right)^2-\dfrac{1}{5}< =-\dfrac{1}{5}\)

Dấu = xảy ra khi x=-2/5

hoc tot de lam lien doi nho chua.

7 tháng 4 2018

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1

9 tháng 8 2016

a) \(A=2x^2+9y^2-6xy-6x-12y+2014\)

\(=\left(2x^2-6xy-6x\right)+\left(9y^2-12y\right)+2014\)

\(=2\left[x^2-2.x.\frac{3\left(y+1\right)}{2}+\frac{9\left(y+1\right)^2}{4}\right]+\left[9y^2-12y-\frac{9}{2}.\left(y+1\right)^2\right]+2014\)

\(=2\left[x-\frac{3\left(y+1\right)}{2}\right]^2+\frac{1}{2}\left(3y-7\right)^2+1985\ge1985\)

Dấu "=" xảy ra khi và chỉ khi y = \(\frac{7}{3}\Rightarrow x=5\)

Vậy Min A = 1985 tại \(\left(x;y\right)=\left(5;\frac{7}{3}\right)\)

b) \(B=-x^2+2xy-4y^2+2x+10y-8\)

\(=-\left(x^2-2xy-2x\right)-\left(4y^2-10y\right)-8\)

\(=-\left[x^2-2x\left(y+1\right)+\left(y+1\right)^2\right]-\left[4y^2-10y-\left(y+1\right)^2\right]-8\)

\(=-\left(x-y-1\right)^2-\left(y-2\right)^2+5\le5\)

Dấu đẳng thức xảy ra khi và chỉ khi y = 2 => x = 3

Vậy B đạt giá trị lớn nhất bằng 5 tại (x;y) = (3;2)

9 tháng 8 2016

pn ơi , giải thích hộ t câu a vs, t k hiểu rõ lắm

15 tháng 3 2017

1) a) Đặt biểu thức là A

\(A=2x^2+4y^2-4xy-4x-4y+2017\)

\(A=\left(x-2y\right)^2+x^2-4x-4y+2017\)

\(A=\left(x-2y\right)^2+2\left(x-2y\right)+x^2-6x+2017\)

\(A=\left(x-2y-1\right)^2+\left(x+3\right)^2+2008\)

Vậy: MinA=2008 khi x=-3; y=-2

15 tháng 3 2017

3) a) \(A=\dfrac{1}{x^2+x+1}\)

\(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\Rightarrow B\ge\dfrac{3}{4}\Rightarrow A\ge\dfrac{4}{3}\)

Vậy MinA\(\dfrac{4}{3}\) khi x=-0,5

20 tháng 10 2021

\(A=-2x^2-10y^2+4xy+4x+4y+2016\)

\(=-2.\left(x^2+5y^2-4xy-4x-4y\right)+2016\)

\(=-2.\left(x^2+4y^2+4-4xy-4x+8y+y^2-12y+36\right)+2.36+2016\)

\(=-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\)

Ta có: \(\left(x-2y-2\right)^2+\left(y-6\right)^2\ge0\)

\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]\le0\)

\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\le2088\)

\(\Rightarrow A\le2088\)

Vậy giá trị lớn nhất của \(A=2088\) khi: \(\hept{\begin{cases}x-2y-2=0\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=2y+2\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=14\\y=6\end{cases}}\)

23 tháng 10 2022

sao lại có thêm + 4 vào mà ko có thêm -4 vào ?