Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MÌnh làm tắt mong bạn hiểu
A=5x-x^2 =-(x^2-5x) = -[(x-5/2)^2 -25/4] = -(x-5/2)^2 +25/4 \(\le\) 25/4
Vậy giá trị lớn nhất là 25/4 khi x=5/2
c/4x-x^2+3 =-(x^2-4x+3) = -[(x-2)^2 -1] =-(x-2)^2 +1 \(\le\) 1
Vậy lớn nhất là 1 khi x=2
C= 5-8x-x^2 =-(x^2 +8x-5) = -[(x+4)^2 -21] = -(x+4)^2 +21 \(\le\)21
Vay lớn nhất là 21 khi x=-4
\(A=-5x^2-4x+7\)
\(\Leftrightarrow-5A=25x^2+20x-35\)
\(\Leftrightarrow-5A=\left(25x^2+20x+4\right)-39\)
\(\Leftrightarrow-5A=\left(5x+2\right)^2-39\)
Ta có:
\(\left(5x+2\right)^2-39\ge39\Rightarrow A\le\frac{-39}{5}\)
Dấu '' = '' xảy ra khi: \(x=\frac{-2}{5}\)
\(A=x-x^2=-x^2+x=-\left(x^2-x\right)=-\left(x^2-x+1-1\right)\)
\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}-1\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}-1\right]=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\)
Dấu "=" xảy ra <=> \(\left(x-\frac{1}{2}\right)^2=0< =>x=\frac{1}{2}\)
Vậy MaxA=1/4 khi x=1/2
\(B=-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-2.x.3+9+2\right)=-\left[\left(x-3\right)^2+2\right]=-2-\left(x-3\right)^2\le-2\)
Dấu "=" xảy ra <=> x-3=0<=>x=3
Vậy maxB=-2 khi x=3
1. Ta có : \(-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2\cdot x\cdot2+2^2\right)+8\)
\(=-\left(x-2\right)^2+8\)
Vì \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2\le0\forall x\)
=> \(-\left(x-2\right)^2+8\le8\forall x\)
Dấu " = " xảy ra khi và chỉ khi -(x - 2)2 = 0 => x = 2
Vậy GTLN là 8 khi x = 2
2. \(4-16x^2-8x=16x^2-8x-4\)
\(=\left[\left(4x\right)^2-2\cdot4x\cdot1+1^2\right]-5\)
\(=\left(4x-1\right)^2-5\)
Vì \(\left(4x-1\right)^2\ge0\forall x\)
=> \(\left(4x-1\right)^2-5\le-5\forall x\)
Dấu " = " xảy ra khi và chỉ khi (4x - 1)2 = 0 => x = 1/4
Vậy GTLN là -5 khi x = 1/4
2. Ta có : \(x^2+2x+y^2-6y+10=0\)
=> \(\left(x^2+2x+1\right)+\left(y^2-6y+9\right)=0\)
=> \(\left(x+1\right)^2+\left(y-3\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y-3\right)^2\ge0\forall x,y\)
Dấu " = " xảy ra khi và chỉ khi
+) (x + 1)2 = 0 => x = -1
+) (y - 3)2 = 0 => y = 3
Vậy GTNN bằng 0 khi x = -1,y = 3
Bài 3 làm nốt nhé
P/S : K chắc :<
Giải thích các bước giải:CÂU 3
3a = (4-1) (4+1) (4^2+1) (4^4+1) (4^8+1) (4^16+1)
=(4^2-1) (4^2+1) (4^8+1) (4616+1)
=(4^8-1) (4^8+1 ) (4^16+1)
=(4^16-1)(4^16+1)
=4^32-1 =b ( dpcm)
câu 2: (x+1)^2 +(y-3)^2=0 nếu x=-1 và ngược lại