\(x^2+5y^2+2xy-4x-8y+2015\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

\(P=\left(x^2+2xy+y^2\right)-4x-4y+4+\left(4y^2-4y+1\right)+2010\)

     \(=\left(x+y\right)^2-4\left(x+y\right)+4+\left(2y-1\right)^2+2010\)

\(P=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\)  với mọi  \(x,y\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\left(x+y-2\right)^2=0\)  và  \(\left(2y-1\right)^2=0\)

                              \(\Leftrightarrow\)  \(x+y-2=0\)  và  \(2y-1=0\)

                              \(\Leftrightarrow\)  \(x=2-y\)  và  \(y=\frac{1}{2}\)

                              \(\Leftrightarrow\)  \(x=\frac{3}{2}\)  và  \(y=\frac{1}{2}\)

Vậy,  \(P_{min}=2010\)  \(\Leftrightarrow\)   \(x=\frac{3}{2};\)  và  \(y=\frac{1}{2}\)

22 tháng 6 2019

\(B=12x-8y-4x^2-y^2+1\)

\(=-\left(4x^2-12x+y^2+8y-1\right)\)

\(=-\left[\left(4x^2-12x+9\right)+\left(y^2+8y+16\right)-24\right]\)

\(=\left[\left(2x-3\right)^2+\left(y+4\right)^2-24\right]\)

\(=-\left(2x-3\right)^2-\left(y+4\right)^2+24\)

\(\Rightarrow B_{max}=24\Leftrightarrow-\left(2x-3\right)^2-\left(y+4\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}2x-3=0\\y+4=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-4\end{cases}}}\)

22 tháng 6 2019

Ta có:  B = 12x - 8y - 4x2 - y2 + 1 = (-4x2 + 12x - 9) - (y2 + 8y + 16) + 26 = -4(x2 - 3x + 9/4) - (y + 4)2 + 26 = -4(x - 3/2)2 - (y + 4)2 + 26

Ta luôn có: -4(x - 3/2)2 \(\le\) 0 \(\forall\) x (vì  4(x - 3/2)2 \(\ge\)0 \(\forall\)x)

             -(y + 4)2 \(\le\) 0 \(\forall\)y  (vì (y + 4)2 \(\ge\)\(\forall\) y)

=> -4(x - 3/2)2 - (y + 4)2 + 26 \(\le\) 26 \(\forall\)x,y

hay B \(\le\) 26 \(\forall\)x, y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+4\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}x-\frac{3}{2}=0\\y+4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{3}{2}\\y=-4\end{cases}}\)

Vậy Bmax = 26 tại x = 3/2 và y = -4

13 tháng 8 2020

Bài làm:

a) Sửa đề:

\(A=4x-x^2=-\left(x^2-4x+4\right)+4\)

\(=-\left(x-2\right)^2+4\le4\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(A_{Max}=4\Leftrightarrow x=2\)

b) \(B=-x^2-4x+5=-\left(x^2+4x+4\right)+9\)

\(=-\left(x+2\right)^2+9\le9\)

Dấu "=" xảy ra khi: \(-\left(x+2\right)^2=0\Rightarrow x=-2\)

Vậy \(B_{Max}=9\Leftrightarrow x=-2\)

c) \(C=-x^2-2y^2-2xy+2y\)

\(C=-\left(x^2+2xy+y^2\right)-\left(y^2-2y+1\right)+1\)

\(C=-\left(x+y\right)^2-\left(y-1\right)^2+1\le1\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+y\right)^2=0\\-\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy \(C_{Max}=1\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

13 tháng 8 2020

a) Sửa : A = 4x - x2

A = -x2 + 4x - 4 + 4

A = -( x2 - 4x + 4 ) + 4

A = -( x - 2 )2 + 4

-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 ) + 4 ≤ 4

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMax = 4 , đạt được khi x = 2

b) B =  -x2 - 4x + 5 = -x2 - 4x - 4 + 9 = -( x2 + 4x + 4 ) + 9 = -( x + 2 )2 + 9

-( x + 2 )2 ≤ 0 ∀ x => -( x + 2 )2 + 9 ≤ 9 

Dấu " = " xảy ra <=> x + 2 = 0 => x = -2

Vậy BMax = 9, đạt được khi x = -2

c) C = -x2 - 2y2 - 2xy + 2y

= ( -x2 - 2xy - y2 ) + ( -y2 + 2y -1 ) + 1

= -( x2 + 2xy + y2 ) - ( y2 - 2y + 1 ) + 1

= -( x + y )2 - ( y - 1 )2 + 1

\(\hept{\begin{cases}-\left(x+y\right)^2\le0\\-\left(y-1\right)^2\le0\end{cases}\Rightarrow}-\left(x+y\right)^2-\left(y-1\right)^2+1\le1\forall x,y\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy CMax = 1 , đạt được khi x = -1 ; y = 1

31 tháng 7 2018

\(C=x^2-2xy+y^2+4y^2+4y+1+2=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

Dấu "=" xảy ra khi\(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=\frac{-1}{2}\end{cases}\Leftrightarrow}x=y=\frac{-1}{2}}\)

a)

P = x^2 + 5y^2 + 2xy – 4x – 8y + 2015

= (x^2 + y^2 + 2xy) – 4(x + y) + 4 + 4y^2 – 4y + 1 + 2010

= (x + y – 2)^2 + (2y – 1)^2 + 2010 ≥ 2010

=> Giá trị nhỏ nhất của P = 2010 khi x = \(\frac{3}{2}\); y = \(\frac{1}{2}\)

30 tháng 1 2019

a) \(x^2+5y^2+2xy-4x-8y+2015\)

\(=x^2+2xy+y^2+4y^2-4x-8y+2015\)

\(=\left(x+y\right)^2-4\left(x+y\right)+4+4y^2-4y+2011\)

\(=\left(x+y\right)^2-2\cdot\left(x+y\right)\cdot2+2^2+\left(2y\right)^2-2\cdot2y\cdot1+1^2+2010\)

\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-2=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)

Vậy.....

30 tháng 1 2019

b) \(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)

\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)

\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)

\(=\frac{3}{x^2+1}\le\frac{3}{1}=3\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy....

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

24 tháng 12 2019

biet tong cua so thu nhat va so thu hai bang 5,8.Tong cua so thu hai va so thu ba bang 6,7.Tong so thu nhat va so thu ba bang 7,5.Tim moi so do?