Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(x^2+2xy+y^2\right)-4x-4y+4+\left(4y^2-4y+1\right)+2010\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+\left(2y-1\right)^2+2010\)
\(P=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\) với mọi \(x,y\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(x+y-2\right)^2=0\) và \(\left(2y-1\right)^2=0\)
\(\Leftrightarrow\) \(x+y-2=0\) và \(2y-1=0\)
\(\Leftrightarrow\) \(x=2-y\) và \(y=\frac{1}{2}\)
\(\Leftrightarrow\) \(x=\frac{3}{2}\) và \(y=\frac{1}{2}\)
Vậy, \(P_{min}=2010\) \(\Leftrightarrow\) \(x=\frac{3}{2};\) và \(y=\frac{1}{2}\)
\(B=12x-8y-4x^2-y^2+1\)
\(=-\left(4x^2-12x+y^2+8y-1\right)\)
\(=-\left[\left(4x^2-12x+9\right)+\left(y^2+8y+16\right)-24\right]\)
\(=\left[\left(2x-3\right)^2+\left(y+4\right)^2-24\right]\)
\(=-\left(2x-3\right)^2-\left(y+4\right)^2+24\)
\(\Rightarrow B_{max}=24\Leftrightarrow-\left(2x-3\right)^2-\left(y+4\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}2x-3=0\\y+4=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-4\end{cases}}}\)
Ta có: B = 12x - 8y - 4x2 - y2 + 1 = (-4x2 + 12x - 9) - (y2 + 8y + 16) + 26 = -4(x2 - 3x + 9/4) - (y + 4)2 + 26 = -4(x - 3/2)2 - (y + 4)2 + 26
Ta luôn có: -4(x - 3/2)2 \(\le\) 0 \(\forall\) x (vì 4(x - 3/2)2 \(\ge\)0 \(\forall\)x)
-(y + 4)2 \(\le\) 0 \(\forall\)y (vì (y + 4)2 \(\ge\)0 \(\forall\) y)
=> -4(x - 3/2)2 - (y + 4)2 + 26 \(\le\) 26 \(\forall\)x,y
hay B \(\le\) 26 \(\forall\)x, y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+4\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}x-\frac{3}{2}=0\\y+4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{3}{2}\\y=-4\end{cases}}\)
Vậy Bmax = 26 tại x = 3/2 và y = -4
Bài làm:
a) Sửa đề:
\(A=4x-x^2=-\left(x^2-4x+4\right)+4\)
\(=-\left(x-2\right)^2+4\le4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy \(A_{Max}=4\Leftrightarrow x=2\)
b) \(B=-x^2-4x+5=-\left(x^2+4x+4\right)+9\)
\(=-\left(x+2\right)^2+9\le9\)
Dấu "=" xảy ra khi: \(-\left(x+2\right)^2=0\Rightarrow x=-2\)
Vậy \(B_{Max}=9\Leftrightarrow x=-2\)
c) \(C=-x^2-2y^2-2xy+2y\)
\(C=-\left(x^2+2xy+y^2\right)-\left(y^2-2y+1\right)+1\)
\(C=-\left(x+y\right)^2-\left(y-1\right)^2+1\le1\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+y\right)^2=0\\-\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy \(C_{Max}=1\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
a) Sửa : A = 4x - x2
A = -x2 + 4x - 4 + 4
A = -( x2 - 4x + 4 ) + 4
A = -( x - 2 )2 + 4
-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 ) + 4 ≤ 4
Dấu " = " xảy ra <=> x - 2 = 0 => x = 2
Vậy AMax = 4 , đạt được khi x = 2
b) B = -x2 - 4x + 5 = -x2 - 4x - 4 + 9 = -( x2 + 4x + 4 ) + 9 = -( x + 2 )2 + 9
-( x + 2 )2 ≤ 0 ∀ x => -( x + 2 )2 + 9 ≤ 9
Dấu " = " xảy ra <=> x + 2 = 0 => x = -2
Vậy BMax = 9, đạt được khi x = -2
c) C = -x2 - 2y2 - 2xy + 2y
= ( -x2 - 2xy - y2 ) + ( -y2 + 2y -1 ) + 1
= -( x2 + 2xy + y2 ) - ( y2 - 2y + 1 ) + 1
= -( x + y )2 - ( y - 1 )2 + 1
\(\hept{\begin{cases}-\left(x+y\right)^2\le0\\-\left(y-1\right)^2\le0\end{cases}\Rightarrow}-\left(x+y\right)^2-\left(y-1\right)^2+1\le1\forall x,y\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy CMax = 1 , đạt được khi x = -1 ; y = 1
a)
P = x^2 + 5y^2 + 2xy – 4x – 8y + 2015
= (x^2 + y^2 + 2xy) – 4(x + y) + 4 + 4y^2 – 4y + 1 + 2010
= (x + y – 2)^2 + (2y – 1)^2 + 2010 ≥ 2010
=> Giá trị nhỏ nhất của P = 2010 khi x = \(\frac{3}{2}\); y = \(\frac{1}{2}\)
a) \(x^2+5y^2+2xy-4x-8y+2015\)
\(=x^2+2xy+y^2+4y^2-4x-8y+2015\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+4y^2-4y+2011\)
\(=\left(x+y\right)^2-2\cdot\left(x+y\right)\cdot2+2^2+\left(2y\right)^2-2\cdot2y\cdot1+1^2+2010\)
\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-2=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)
Vậy.....
b) \(\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)
\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)
\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)
\(=\frac{3}{x^2+1}\le\frac{3}{1}=3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy....
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
biet tong cua so thu nhat va so thu hai bang 5,8.Tong cua so thu hai va so thu ba bang 6,7.Tong so thu nhat va so thu ba bang 7,5.Tim moi so do?