\(\frac{1}{\text{ (x-2)^2 + 8}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

Để \(\frac{1}{\left(x-2\right)^2+8}\) đạt giá trị lớn nhất

mà (x-2)^2 + 8 >= 0; 8 > 0 => (x-2)^2 + 8 >0

=> (x - 2 ) ^2 + 8 = 8

(x-2) ^2                 = 0

x -2                     = 0

x                         = 2

KL:x = 2 để 1/(x-2)^2+ 8 đạt giá trị lớn nhất ( giá trị lớn nhất của 1/(x-2)^2+8 = 1/8 )

8 tháng 7 2018

1,\(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge0+9=9\)

Nên GTNN của \(A\) là \(9\) đạt được khi \(x-0,4=0\Rightarrow x=0,4\)

2,\(\left|x+3\right|\ge0\Rightarrow-\left|x+3\right|\le0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}-0=\frac{1}{8}\)

Nên GTLN của \(B\) là \(\frac{1}{8}\) đạt được khi \(x+3=0\Rightarrow x=-3\)

8 tháng 7 2018

1.

\(A=\left|x-0,4\right|+9\)

Vì \(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge9\)

Vậy GTNN của A là 9 khi x = 0,4

2.

\(B=\frac{1}{8}-\left|x+3\right|\)

Vì \(\left|x+3\right|\ge0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}\)

Vậy GTLN của B là \(\frac{1}{8}\)khi x = -3

31 tháng 3 2019

a) Ta có : \(|x-7|\ge0\)

\(\Rightarrow A=124-5|x-7|\ge124\left(1\right)\)

Mà \(A=0\)

\(\Leftrightarrow5|x-7|=0\)

\(\Leftrightarrow x=7\left(2\right)\)

Từ (1) và (2) => max A = 124

b) 

+) Với \(x\ge\frac{2}{3}\)thì \(x-\frac{2}{3}\ge0\)

\(\Rightarrow|x-\frac{2}{3}|=x-\frac{2}{3}\)

Thay vào ta tính được \(B=\frac{7}{6}\)( bạn tự thay vào tính nha )

Còn lại bạn tự làm nha .

Cuối cùng ra \(_{max}B=\frac{7}{6}\)

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

Đặt A=|x+5|+|x+2|+|x-7|+|x-8|

TH1: x<-5

=>x+5<0; x+2<0; x-7<0; x-8<0

=>A=-x-5-x-2-x+7-x+8=-4x+8

Vì A=-4x+8 là hàm số nghịch biến trên R

nên A nhỏ nhất khi x lớn nhất

Khi x<-5 thì x sẽ không có giá trị lớn nhất

=>A không có giá trị nhỏ nhất

TH2: -5<=x<-2

=>x+5>=0; x+2<0; x-7<0; x-8<0

=>A=x+5-x-2-x+7-x+8=-2x+18

Vì A=-2x+18 là hàm số nghịch biến trên R

nên A nhỏ nhất khi x lớn nhất

Khi -5<=x<-2 thì x sẽ không có giá trị lớn nhất

=>A không có giá trị nhỏ nhất

TH3: -2<=x<7

=>x+5>0; x+2>=0; x-7<0; x-8<0

=>A=x+5+x+2-x+7-x+8=22

=>\(A_{\min}=22\) khi -2<=x<7(1)

TH4: 7<=x<8

=>x+5>0; x+2>0; x-7>=0; x-8<0

=>A=x+5+x+2+x-7+8-x=2x+8

Vì A=2x+8 là hàm số đồng biến trên R

nên A nhỏ nhất khi x nhỏ nhất

Với 7<=x<8 thì \(x_{\min}=7\)

=>\(A_{\min}=2\cdot7+8=14+8=22\) (2)

TH5: x>=8

=>x+5>0; x+2>0; x-7>0; x-8>=0

=>A=x+5+x+2+x-7+x-8=4x-8

Vì hàm số A=4x-8 là hàm số đồng biến trên R

nên A nhỏ nhất khi x nhỏ nhất

Khi x>=8 thì \(x_{\min}=8\)

=>\(A_{\min}=4\cdot8-8=32-8=24\) (3)

Từ (1),(2),(3) suy ra \(A_{\min}=22\) khi -2<=x<=7

\(M=\frac{44}{\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|}\)

=>\(M=\frac{44}{A}\le\frac{44}{22}=2\forall x\)

Dấu '=' xảy ra khi -2<=x<=7

28 tháng 8 2016

a) \(A=\left|x-\frac{2}{3}\right|-4\)

Có: \(\left|x-\frac{2}{3}\right|\ge0\)

\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)

Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)

Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\)  ( K có GTLN bạn nhé )

b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)

\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)

Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)

Vậy:  \(Max_B=2\) tại \(x=-\frac{5}{6}\)

  \(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)

\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)

Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)

Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)

8 tháng 7 2016

a. A = 5.(x - 2)2 + 1

Ta có: (x - 2)\(\ge\)0 => 5.(x - 2)2 \(\ge\)0 => 5.(x - 2)2 + 1 \(\ge\)1

Do đó A có GTNN là 1

<=> x - 2 = 0

<=> x = 2

b. B = 4 - (1/2 - x)2

Ta có: (1/2 - x)2 \(\ge\)0

=> 4 - (1/2 - x)2 \(\le\)4

Do đó B có GTLN là 4

<=> 1/2 - x = 0

<=> x = 1/2