K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

a) Thay \(x=25\)vào B: 

=> \(B=\frac{2}{\sqrt{25}-6}=\frac{2}{5-6}=\frac{2}{-1}=-2\)

b); c) Bạn quy đồng mẫu số là ra A; Ra luôn P nhé

10 tháng 8 2020

bạn giúp mình đc ko

NV
3 tháng 5 2020

\(x=\frac{3}{4}\Rightarrow y=0\)

\(x\ne\frac{3}{4}\Rightarrow Ax^2+A=6-8x\)

\(\Leftrightarrow Ax^2+8x+A-6=0\)

\(\Delta'=16-A\left(A-6\right)\ge0\)

\(\Leftrightarrow-A^2+6A+16\ge0\Rightarrow-2\le A\le8\)

\(A_{min}=-2\) khi \(x=2\)

\(A_{max}=8\) khi \(x=-\frac{1}{2}\)

14 tháng 11 2016

\(R=x\sqrt{3-x^2}\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)

đạt được khi \(x=\sqrt{\frac{3}{2}}\)

13 tháng 11 2016

giai duoc k cho minh nha

10 tháng 7 2018

Đ/k : \(x\ne16\)

Để \(A\in Z\)

\(\Leftrightarrow\frac{\sqrt{x}-3}{\sqrt{x}-4}\in Z\)

\(\Leftrightarrow\sqrt{x}-3⋮\sqrt{x}-4\)

\(\Leftrightarrow\sqrt{x}-4+1⋮\sqrt{x}-4\)

\(\Leftrightarrow1⋮\sqrt{x}-4\)

\(\Leftrightarrow\sqrt{x}-4\in\left\{1;-1\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{5;3\right\}\)

\(\Leftrightarrow x\in\left\{25;9\right\}\)

Vậy \(x\in\left\{25;9\right\}\Leftrightarrow A\in Z\)

15 tháng 8 2020

a) ĐKXĐ: \(\hept{\begin{cases}x-9\ne0\\\sqrt{x}\ge0\\\sqrt{x}\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ge0\\x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne9\\x>0\end{cases}}}\)

\(A=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(\Leftrightarrow A=\left(\frac{x+3}{x-9}+\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(\Leftrightarrow A=\left(\frac{x+3}{x-9}+\frac{\sqrt{x}-3}{x-9}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(\Leftrightarrow A=\frac{x+\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(\Leftrightarrow A=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+3}.\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{x-9}\)

b) \(x=\sqrt{6+4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)

\(\Leftrightarrow x=\sqrt{4+4\sqrt{2}+2}-\sqrt{2+2\sqrt{2}+1}\)

\(\Leftrightarrow x=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2}\)

\(\Leftrightarrow x=\left|2+\sqrt{2}\right|-\left|\sqrt{2}+1\right|\)

\(\Leftrightarrow x=2+\sqrt{2}-\sqrt{2}-1=1\left(TM\right)\)

Vậy với x= 1 thì giá trị của biểu thức \(A=\frac{\left(1+1\right)\left(1-3\right)}{1-9}=\frac{2.\left(-2\right)}{-8}=\frac{-4}{-8}=\frac{1}{2}\)

c)

Ta có :

\(\frac{x-9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\)

+)  \(\frac{1}{A}\)nguyên 

\(\Leftrightarrow1+\frac{2}{\sqrt{x}+1}\)nguyên

\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)\)

\(\Leftrightarrow x=1\)

Vậy ..............