\(\frac{2}{3}\)-x|

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

\(A=5-\left|\frac{2}{3}-x\right|\)

Ta có: \(\left|\frac{2}{3}-x\right|\ge0\forall x\)

\(\Rightarrow5-\left|\frac{2}{3}-x\right|\le5\forall x\)

\(A=5\Leftrightarrow\left|\frac{2}{3}-x\right|=0\Leftrightarrow x=\frac{2}{3}\)

Vậy \(A=5\Leftrightarrow x=\frac{2}{3}\)

17 tháng 7 2018

chữ A ngược có ngĩa là gì vậy

1 tháng 3 2016

giúp với mình sắp nạp rồi

7 tháng 9 2016

\(B=9-\left|x-\frac{1}{2}\right|\)

Vì : \(-\left|x-\frac{1}{2}\right|\le9\)

=> \(9-\left|x-\frac{1}{2}\right|\le9\)

Vậy GTLN của B là 9 khi \(x=\frac{1}{2}\)

7 tháng 9 2016

Ta có : \(\left|x-\frac{1}{2}\right|\ge0\Rightarrow-\left|x-\frac{1}{2}\right|\le0\Rightarrow9-\left|x-\frac{1}{2}\right|\le9\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-\frac{1}{2}\right|=0\Leftrightarrow x=\frac{1}{2}\)

Vậy Max B = 9 <=> x = 1/2

20 tháng 3 2020

1) \(P=\frac{2}{6-m}\left(m\ne6\right)\)

Để P có GTLN thì 6-m đạt giá trị nhỏ nhất

=> 6-m=1

=> m=5 (tmđk)
Vậy m=5 thì P đạt giá trị lớn nhất

28 tháng 6 2015

1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5<-21\)<=> \(x\ge8\) hoặc \(x<-13\)

2) 

a) |2x-3|>=0 => A>=0-5=-5 => Min A=-5 <=> x=3/2

b) \(\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\Rightarrow B\ge2+5=7\)=> MinB=7 <=>x=1

3)

\(\left|2x-1\right|\ge0\Rightarrow-\left|2x-1\right|\le0\Leftrightarrow A\le0+7=7\Rightarrow MaxA=7\Leftrightarrow x=-\frac{1}{2}\)

b) 

th1: nếu x<-3/2 => B=-2x-3+2x+2=-1

th2: nếu \(-\frac{3}{2}\le x\le-1\)=> B=2x+3+2x+2=4x+5

ta có:\(-\frac{3}{2}\le x\le-1\Rightarrow-6\le4x\le-4\Leftrightarrow-1\le4x+5\le1\Rightarrow-1\le B\le1\)

th3: nếu x>-1 => B=2x+3-2x-2=1=>

Max B=1 <=> x>-1 hoặc \(-\frac{3}{2}\le x\le-1\)

28 tháng 6 2015

2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b|  \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0 

Ta có: B = |2x - 1| + |3 - 2x| + 5  \(\ge\) |2x - 1+3 - 2x| + 5  = |2| + 5 = 7

=> Min B = 7 khi

(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0 

Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\)  0 

=> x \(\ge\) 1/2 và x  \(\le\) 3/2

 

20 tháng 8 2016

Ta có:

x+ 15/x2 + 3 = x2 + 3/x2 + 3 + 12/x2 + 3 = 1 + 12/x2 + 3

Để biểu thức trên đạt GTLN thì 12/x2 + 3 đạt GTLN 

=> x2 + 3 đạt GTNN

Mà x2 + 3 > hoặc = 3

Dấu "=" xảy ra khi và chỉ khi x = 0

=> GTLN của biểu thức: x2 + 15/x2 + 3 = 0 + 15/0 + 3 = 15/3 = 5

20 tháng 8 2016

Đặt: \(M=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=\frac{x^2+3}{x^2+3}+\frac{12}{x^2+3}=1+\frac{12}{x^2+3}\)

Để M đạt GTLN thì \(x^2+3\) đạt giá trị nhỏ nhất.

Có: \(x^2\ge0\Rightarrow x^2+3\ge3\)

Dấu bằng xảy ra hi: \(x^2+3=3\Rightarrow x^2=0\Rightarrow x=0\)

Thay vào: \(M=1+\frac{12}{0^2+3}=1+\frac{12}{3}=1+4=5\)

Vậy: \(Max_M=5\) tại \(x=0\)

20 tháng 8 2016

A lớn nhất <=>(x+2)2+5 nhỏ nhất 

Ta có:(x+2)2\(\ge\)0 với mọi x

=>(x+2)2+5\(\ge\)5

Hay Min (x+2)2+5=5 khi x=-2

Vậy Max A=10/5=2 khi x=-2