Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(B=-x^2-2x+2\)
\(\Rightarrow BMax\Leftrightarrow-x^2-2x+2Max\)
\(\Leftrightarrow-\left(x^2+2x-2\right)Max\)
\(\Leftrightarrow-\left(x^2+2x+1-3\right)Max\)
\(\Leftrightarrow-\left[\left(x+1\right)^2-3\right]Max\)
\(\Leftrightarrow-\left(x+1\right)^2+3Max\)
Vì \(-\left(x+1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+1\right)^2+3\le3\forall x\)
Dấu = xảy ra \(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
\(\Rightarrow MaxB=3\Leftrightarrow x=-1\)
\(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\)
Do \(x^2+3\ge3;\forall x\)
\(\Rightarrow\dfrac{12}{x^2+3}\le\dfrac{12}{3}=4\)
\(\Rightarrow B\le1+4=5\)
Vậy \(B_{max}=5\) khi \(x=0\)
Để X^2+15/ X^2 + 3 đạt GTLN
Biểu thức đạt GTLN khi X^2 + 3 đạt giá trị dương nhỏ nhất
\(x^2\ge0\Leftrightarrow x^2+3\ge0+3=3\)
=>GTNN của mẫu là 3 khi đó x2=0 <=>x=0
=>Giá trị của tử khi x=0 là \(0^2+15=15\)
=>GTLN của biểu thức là:\(\frac{15}{3}=5\Leftrightarrow x=0\)
\(\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Ta có
\(x^2\ge0\) với mọi x
\(\Rightarrow x^2+3\ge3>0\)
\(\Rightarrow\frac{1}{x^2+3}\ge\frac{1}{3}\)
\(\Rightarrow\frac{12}{x^2+3}\ge4\)
\(\Rightarrow1+\frac{12}{x^2+1}\ge5\)
Dấu " = " xảy ra khi x=0
Vậy biểu thức đạt giá trị nhỏ nhất là 5 khi x=0
Lời giải:
$B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}$
Ta thấy: $x^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow x^2+3\geq 3$
$\Rightarrow B=1+\frac{12}{x^2+3}\leq 1+\frac{12}{3}=5$
Vậy $B_{\max}=5$
Giá trị này đạt tại $x^2=0\Leftrightarrow x=0$