Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có |x|≥0 => |x| +1996 ≥ 1996
=> |x| +1996/-1997 ≤ 1996/-1997
=> A ≤1996/-1997
=> GTLN A = 1996/-1997
dấu "=" xảy ra <=> x=0
vậy GTLN A =1996/-1997 <=> x=0
Ta có: |x| ≥ 0 ;\(\forall\)x
=> |x| + 1996≥ 1996 ;
=> \(\dfrac{|x|+1996}{-1997}\) ≥ \(\dfrac{-1996}{1997}\) ;\(\forall\)x
=> A \(\ge\) \(\dfrac{-1996}{1997}\)
Dấu = xảy ra <=> |x| =0
<=> x=0
Vậy GTLN của A là \(\dfrac{-1996}{1997}\) tại x = 0
1.\(\frac{1996}{\left|x\right|+1997}\)có GTLN \(\Leftrightarrow\left|x\right|+1997\)có GTNN.
Mà \(\left|x\right|+1997\ne0\)
Ta thấy: \(\left|x\right|\ge0\forall x\in R\Rightarrow\left|x\right|+1997\ge1997\)
\(\Rightarrow\left|x\right|=0\)thì \(\left|x\right|+1997\)có GTNN là \(1997\)
\(\Rightarrow\)GTLN của \(\frac{1996}{\left|x\right|+1997}\)là \(\frac{1996}{1997}\)khi x=0
2.\(\frac{\left|x\right|+1996}{-1997}=\frac{-\left(\left|x\right|+1996\right)}{1997}\)
\(\Rightarrow\left|x\right|+1996\)phải có GTNN thì \(\frac{\left|x\right|+1996}{-1997}\)đạt GTLN
Mà \(\left|x\right|\ge0\forall x\in R\Rightarrow x=0\)thì \(\left|x\right|+1996\)có GTNN là \(1996\)
Vậy GTLN của \(\frac{\left|x\right|+1996}{-1997}\)là \(\frac{1996}{-1997}\)khi x=0
a: \(\left|x\right|+1996>=1996\)
\(\Leftrightarrow\dfrac{\left|x\right|+1996}{1997}\ge\dfrac{1996}{1997}\)
\(\Leftrightarrow A\le-\dfrac{1996}{1997}\)
Dấu '=' xảy ra khi x=0
b: \(\left|x\right|+1>=1\)
\(\Leftrightarrow\dfrac{1}{\left|x\right|+1}\le1\)
\(\Leftrightarrow B\ge-1\)
Dấu '=' xảy ra khi x=0
Ta có : \(\frac{1996}{IxI+1997}\)lớn nhất \(\Leftrightarrow IxI+1997\)nhỏ nhất
==> để \(\frac{1996}{IxI+1997}\)lớn nhất thì I x I phải nhỏ nhất
Mà I x I nhỏ nhất khi x = 0
==/ G/t lớn nhất của phân số là \(\frac{1996}{1997}\)
b,Ta có : \(\frac{IxI+1945}{1946}\)nhỏ nhất khi và chỉ khi I x I + 1945 nhỏ nhất ==> I x I phải = 0
Vậy giá trị nhỏ nhất của phân số là \(\frac{1945}{1946}\)
a) Ta có : \(|x-7|\ge0\)
\(\Rightarrow A=124-5|x-7|\ge124\left(1\right)\)
Mà \(A=0\)
\(\Leftrightarrow5|x-7|=0\)
\(\Leftrightarrow x=7\left(2\right)\)
Từ (1) và (2) => max A = 124
b)
+) Với \(x\ge\frac{2}{3}\)thì \(x-\frac{2}{3}\ge0\)
\(\Rightarrow|x-\frac{2}{3}|=x-\frac{2}{3}\)
Thay vào ta tính được \(B=\frac{7}{6}\)( bạn tự thay vào tính nha )
Còn lại bạn tự làm nha .
Cuối cùng ra \(_{max}B=\frac{7}{6}\)
\(\frac{-2016}{2017}\)
ta có |x|≥0 => |x| +1996 ≥ 1996
=> |x| +1996/-1997 ≤≤ 1996/-1997
=> A ≤≤1996/-1997
=> GTLN A = 1996/-1997
dấu "=" xảy ra <=> x=0
vậy GTLN A =1996/-1997 <=> x=0
≤ ≤ 1996/-1997 (khi chia 2 vế cho số am thì đổi chiều)