K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

a) Ta có: \(\left|x\right|\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow A=\left|x\right|+\frac{6}{13}\ge\frac{6}{13}\)

Dấu "=" xảy ra "=" |x| = 0 <=> x = 0

Vậy Amin = 6/13 khi và chỉ khi x = 0

b) Ta có: \(\left|x+2,8\right|\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow B=\left|x+2,8\right|-7,9=\left|x+2,8\right|+\left(-7,9\right)\ge-7,9\)

Dấu "=" xảy ra <=> |x+2,8| = 0 <=> x + 2,8 = 0 <=> x = -2,8

Vậy Bmin = -7,9 khi và chỉ khi x = -2,8

c) Ta có: \(\left|x+1,5\right|\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow C=\left|x+1,5\right|-5,7=\left|x+1,5\right|+\left(-5,7\right)\ge-5,7\)

Dấu "=" xảy ra <=> |x+1,5| = 0 <=> x + 1,5 = 0 <=> x = -1,5

Vậy Cmin = -5,7 khi và chỉ khi x = -1,5

22 tháng 4 2021

\(A=\left|x+5\right|+2-x\\ \Rightarrow A\ge x+5+2-x\forall x\\ \Rightarrow A\ge7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x+5\right|=x+5\\ \Leftrightarrow x+5\ge0\\ \Leftrightarrow x\ge-5\)

Vậy GTNN của A = 7

22 tháng 4 2021

7 và -2x-3

AH
Akai Haruma
Giáo viên
18 tháng 8 2023

Lời giải:
Đặt $|x+2|=a$ với $a\geq 0$. Khi đó:

$A=\frac{3+2a}{1+a}=\frac{2(1+a)+1}{1+a}=2+\frac{1}{1+a}$

Vì $a\geq 0$ với mọi $x$ nên $1+a\geq 1$

$\Rightarrow A=2+\frac{1}{1+a}\leq 2+\frac{1}{1}=3$

Vậy $A_{\max}=3$. Giá trị này đạt tại $a=0\Leftrightarrow |x+2|=0\Leftrightarrow x=-2$

8 tháng 3 2019

Vì \(\left|x+1,5\right|\ge0\) \(\Rightarrow\left|x+1,5\right|-5,7\ge-5,7 \)

      \(\Rightarrow D_{min}=-5,7\Leftrightarrow\left|x+1,5\right|=0\)

                                        \(\Rightarrow x+1,5=0\)

                                        \(\Rightarrow x=-1,5\)

                    Vậy \(D_{min}=-5,7\Leftrightarrow x=-1,5\)

3 tháng 11 2017

a, Ta có :

\(A=\left|x\right|+\dfrac{6}{13}\)

Với \(\forall x\) ta có :

\(\left|x\right|\ge0\)

\(\Leftrightarrow\left|x\right|+\dfrac{6}{13}\ge\dfrac{6}{13}\)

\(\Leftrightarrow A\ge\dfrac{6}{13}\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\)

Vậy \(A_{Min}=\dfrac{6}{13}\Leftrightarrow x=0\)

b, Ta có :

\(\left|x+2,8\right|\ge0\)

\(\Leftrightarrow\left|x+2,8\right|-7,9\ge-7,9\)

\(\Leftrightarrow B\ge7,9\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x+2,8\right|=0\Leftrightarrow x=-2,8\)

Vậy \(B_{Min}=-7,9\Leftrightarrow x=-2,8\)

3 tháng 11 2017

- mơn bạn !!

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull