\(M=\dfrac{\left|x-y\right|+\left|x+y\right|+\left|xy-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

\(P=\frac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\frac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)

\(=\sqrt{xy}+\sqrt{x}-\sqrt{y}\)

\(P=2\Rightarrow\sqrt{xy}+\sqrt{x}-\sqrt{y}=2\)

\(\Rightarrow\left[{}\begin{matrix}x=y=2\\x=4;y=0\end{matrix}\right.\) (t/m)

6 tháng 12 2017

làm thế nào để ra được P = \(\sqrt{xy}\)+ \(\sqrt{x}\)- \(\sqrt{y}\) vậy bn ?

\(A=\dfrac{x\sqrt{x}+x-y+y\sqrt{y}-xy\sqrt{x}-xy\sqrt{y}}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{x\sqrt{x}\left(1-y\right)+x\left(1-y\sqrt{y}\right)-y\left(1-\sqrt{y}\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{\left(1-\sqrt{y}\right)\left[x\sqrt{x}\left(1+\sqrt{y}\right)+x+x\sqrt{y}+xy-y\right]}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{x\sqrt{x}+x\sqrt{xy}+x+x\sqrt{y}+xy-y}{\left(1+\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{x\left(\sqrt{x}+1\right)+x\sqrt{y}\left(\sqrt{x}+1\right)+y\left(x-1\right)}{\left(1+\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\dfrac{x+x\sqrt{y}+y\sqrt{x}-y}{\sqrt{x}+\sqrt{y}}=\sqrt{x}-\sqrt{y}+\sqrt{xy}\)

Để A=2 thì x=2; y=2

19 tháng 10 2017

Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.

21 tháng 7 2018

2

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)

A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)

ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1

=> A ≥ 1

=> Min A =1 khi 1/3 ≤ x ≤ 2/3

9 tháng 10 2017

\(P=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)

\(=\sqrt{xy}+\sqrt{x}-\sqrt{y}\)

Ta có: \(P=\sqrt{xy}+\sqrt{x}-\sqrt{y}=2\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{y}+1\right)=3\)

\(\Rightarrow\left(\sqrt{x}-1,\sqrt{y}+1\right)=\left(1,3;3,1\right)\)

\(\Rightarrow\left(x,y\right)=\left(4,4;16,0\right)\)

3 tháng 12 2017

Phần đầu lm kiểu gì để ra được ạ ?

 

22 tháng 10 2017

ta có: xy+yz+zx=1

=> \(1+x^2=x^2+xy+yz+xz=\left(x+z\right)\left(x+y\right)\)

c/m tương tự ta đc: \(1+y^2=\left(x+y\right)\left(y+z\right)\)

                                \(1+z^2=\left(y+z\right)\left(z+x\right)\)

thay vào A ta đc:

\(A=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(y+z\right)\left(z+x\right)}{\left(x+z\right)\left(x+y\right)}}+y\sqrt{\frac{\left(y+z\right)\left(z+x\right)\left(x+z\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+z\right)\left(x+y\right)\left(x+y\right)\left(y+z\right)}{\left(y+z\right)\left(x+z\right)}}\)\(\Rightarrow A=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

\(\Rightarrow A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(\Rightarrow A=2\left(xy+yz+zx\right)\)

\(\Rightarrow A=2\) vì xy+yz+zx=1

26 tháng 10 2020

\(\text{méo biết}\)

11 tháng 4 2021

= căn xy + căn x + căn y còn lại tự tính