Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=2x^2-5x-5\)
* Tại \(x=-2\) giá trị của biểu thức là :
\(A=2.\left(-2\right)^2-5.\left(-2\right)-5\)
\(A=8-\left(-10\right)-5=13\)
*Tại \(x=\dfrac{1}{2}\)
\(A=2\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}-5\)
\(A=-7\)
Câu 3:
a) \(A=\left(x-3\right)^2+9\ge9,\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)
..........................\(\Leftrightarrow x=3\)
Vậy MIN A = 9 \(\Leftrightarrow x=3\)
P/s: câu b coi lại đề
c) \(\left|x-1\right|+\left(2y-1\right)^4+1\ge1;\forall x,y\)
Dấu "='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy .............................
Câu 5:
Ta có: \(A=\dfrac{x-5}{x-3}=\dfrac{x-3-2}{x-3}=1-\dfrac{2}{x-3}\)
Để A nguyên thì \(2⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Do đó:
\(x-3=-2\Rightarrow x=1\)
\(x-3=-1\Rightarrow x=2\)
\(x-3=1\Rightarrow x=4\)
\(x-3=2\Rightarrow x=5\)
Vậy .....................
a: \(B=\left|2-x\right|+1.5>=1.5\)
Dấu '=' xảy ra khi x=2
b: \(B=-5\left|1-4x\right|-1\le-1\)
Dấu '=' xảy ra khi x=1/4
g: \(C=x^2+\left|y-2\right|-5>=-5\)
Dấu '=' xảy ra khi x=0 và y=2
1 . Ta có : x2\(\ge0\) với \(\forall x\)
3|y-2|\(\ge0\) với \(\forall\)y
\(\Rightarrow x^2+3\left|y-2\right|\ge0voi\forall x\)
\(\Rightarrow C\ge-1voi\forall x\) và y
Dấu"=" xảy ra khi x2 = 0 và 3|y-2| = 0
Từ đó tính ra x = .. y=
Vậy Min C=-1\(\Leftrightarrow x=0;y=2\)
Bài 2:
Giải:
Do \(\left|x-2\right|+3\ge0\) nên để B lớn nhất thì \(\left|x-2\right|+3\) nhỏ nhất
Ta có: \(\left|x-2\right|\ge0\)
\(\Rightarrow\left|x-2\right|+3\ge3\)
\(\Rightarrow B=\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\)
Dấu " = " khi \(x-2=0\Rightarrow x=2\)
Vậy \(MAX_B=\dfrac{1}{3}\) khi x = 2
\(a,C=\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)
Ta có \(\left|\dfrac{1}{3}x+4\right|\ge0\)
\(\Rightarrow\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\ge1\dfrac{2}{3}\)
Dấu "=" xảy ra khi \(\left|\dfrac{1}{3}x+4\right|=0\)
\(\Leftrightarrow\dfrac{1}{3}x+4=0\)
\(\Leftrightarrow\dfrac{1}{3}x=0-4=-4\)
\(\Leftrightarrow x=-4:\dfrac{1}{3}\)
\(\Leftrightarrow x=-12\)
Vậy \(\min\limits_C=1\dfrac{2}{3}\Leftrightarrow x=-12\)
\(b,D=\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\)
Ta có : \(\left\{{}\begin{matrix}\left|x-6\right|\ge-x+6\\\left|x+\dfrac{5}{4}\right|\ge x+\dfrac{5}{4}\end{matrix}\right.\)
\(\Rightarrow\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\ge-x+6+x+\dfrac{5}{4}=\dfrac{29}{4}\)
Dấu "=" xảy ra khi
\(\left\{{}\begin{matrix}-x+6\ge0\\x+\dfrac{5}{4}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le6\\x\ge-\dfrac{5}{4}\end{matrix}\right.\)
Vậy \(\min\limits_D=\dfrac{29}{4}\Leftrightarrow-\dfrac{5}{4}\le x\le6\)
b) \(D=\left|x-6\right|+\left|x+\dfrac{5}{4}\right|\)
\(D=\left|6-x\right|+\left|x+\dfrac{5}{4}\right|\ge\left|6-x+x+\dfrac{5}{4}\right|=\dfrac{29}{4}\)
Dấu = xảy ra khi \(\left(6-x\right)\left(x+\dfrac{5}{4}\right)\ge0\Leftrightarrow-\dfrac{5}{4}\le x\le6\)
vậy \(D_{min}=\dfrac{29}{4}\) khi \(-\dfrac{5}{4}\le x\le6\)
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
a) C = 20013 - |5−2x|
do \(-\left|5-2x\right|\le0\forall x\)
=> 20013-\(\left|5-2x\right|\le20013\)
=>A≤20013
=> GTLN C =20013 khi 5-2x=0
=> 2x=5
=> x=\(\dfrac{5}{2}\)
vậy GTLN C = 20013 khi x=\(\dfrac{5}{2}\)
b) D = 7 - \(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\)
do \(-\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le0\forall x\)
=> 7-\(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le7\)
=> D≤7
=> GTLN D =7 khi \(\dfrac{2}{3}+\dfrac{1}{4}x=0\)
=> x=-\(\dfrac{8}{3}\)
1. Tìm x:
a) \(\left(x+36\right)^2=1936\Leftrightarrow x+36=\pm44.\) Vậy x = 8 hoặc x = -80
b) \(\left(\dfrac{3}{5}\right)^{x+2}=\dfrac{81}{625}\Leftrightarrow\left(\dfrac{3}{5}\right)^{x+2}=\left(\dfrac{3}{5}\right)^4\Leftrightarrow x+2=4\Leftrightarrow x=2\)
c) Xem lại đề
d) \(\left(\dfrac{9}{16}\right)^{x-5}=\left(\dfrac{4}{3}\right)^4\Leftrightarrow\left(\dfrac{3}{4}\right)^{2\left(x-5\right)}=\left(\dfrac{3}{4}\right)^{-4}\Leftrightarrow2\left(x-5\right)=-4\Leftrightarrow x=3\)
e) \(\left(\dfrac{3}{5}\right)^x.\left(\dfrac{125}{27}\right)^x=\dfrac{81}{625}\Leftrightarrow\left(\dfrac{3}{5}.\dfrac{125}{27}\right)^x=\left(\dfrac{3}{5}\right)^4\Leftrightarrow\left(\dfrac{5}{3}\right)^{2x}=\left(\dfrac{5}{3}\right)^{-4}\Leftrightarrow2x=-4\) Vậy x = -2
3. Tính giá trị của biểu thức:
\(A=\left\{-\left[\left(\dfrac{1}{x}\right)^2\right]^3\right\}^5.\left\{-\left[\left(-x\right)^5\right]^2\right\}^3\) \(\left(x\notin0\right)\)
\(=\left\{-\left[-\dfrac{1}{x^2}\right]^3\right\}^5.\left\{-\left[-\left(-x\right)^5\right]^2\right\}^3=\left\{-\left[-\dfrac{1}{x^6}\right]\right\}^5.\left\{-\left[x^5\right]^2\right\}^3\)
\(=\left\{\dfrac{1}{x^6}\right\}^5.\left\{-x^{10}\right\}^3=\dfrac{1}{x^{30}}.\left(-x^{30}\right)=-1\)
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
\(D=\dfrac{2\left|x\right|+3}{3\left|x\right|-1}\)
\(\left\{{}\begin{matrix}\left|x\right|\ge0\Rightarrow2\left|x\right|\ge0\Rightarrow2\left|x\right|+3\ge3\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|-1\ge-1\end{matrix}\right.\)
\(MAX_D\Rightarrow MIN_{3\left|x\right|-1}\)
\(3\left|x\right|-1\in Z^+\)
\(\Rightarrow3x-1=1\)
\(\Rightarrow3x=2\Rightarrow x=\dfrac{2}{3}\)
\(\Rightarrow MAX_D=\dfrac{2.\left|\dfrac{2}{3}\right|+3}{3.\left|\dfrac{2}{3}\right|-1}=\dfrac{\dfrac{13}{3}}{1}=\dfrac{13}{3}\)