K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

B = 9 x - 3 x 2 = 3 3 x - x 2 = 3 9 / 4 - 9 / 4 + 2 . 3 / 2 x - x 2

= 3 9 / 4 - 9 / 4 - 3 / 2 x + x 2

3 9 / 4 - 3 / 2 x - x 2 = 27 / 4 - 3 / 2 - x 2

Vì 3 / 2 - x 2  ≥ 0 với mọi x

⇒ B = 27/4 −  3 / 2 - x 2  ≤ 27/4 do đó giá trị lớn nhất của B bằng 27/4 tại x = 3/2

15 tháng 9 2021

\(C=-3x^2+12x-7=-3\left(x^2-4x+4\right)+12-7=-3\left(x-2\right)^2+5\le5\)

\(maxC=5\Leftrightarrow x=2\)

15 tháng 9 2021

\(C=-3\left(x^2+4x+4\right)+5=-3\left(x+2\right)^2+5\le5\)

Dấu \("="\Leftrightarrow x=-2\)

7 tháng 12 2017

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của phân thức cực hay, có đáp án | Toán lớp 8

28 tháng 9 2018

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của phân thức cực hay, có đáp án | Toán lớp 8

19 tháng 8 2023

\(E=-4x^2+x+1\)

\(\Rightarrow E=-4\left(x^2-\dfrac{x}{4}\right)+1\)

\(\Rightarrow E=-4\left(x^2-\dfrac{x}{4}+\dfrac{1}{64}\right)+1+\dfrac{1}{16}\)

\(\Rightarrow E=-4\left(x-\dfrac{1}{8}\right)^2+\dfrac{17}{16}\)

 mà \(-4\left(x-\dfrac{1}{8}\right)^2\le0,\forall x\)

\(\Rightarrow E=-4\left(x-\dfrac{1}{8}\right)^2+\dfrac{17}{16}\le\dfrac{17}{16}\)

\(\Rightarrow GTLN\left(E\right)=\dfrac{17}{16}\left(tạix=\dfrac{1}{8}\right)\)

19 tháng 8 2023

\(F=5x-3x^2+6\)

\(\Rightarrow F=-3\left(x^2-\dfrac{5x}{3}\right)+6\)

\(\Rightarrow F=-3\left(x^2-\dfrac{5x}{3}+\dfrac{25}{36}\right)+6+\dfrac{25}{12}\)

\(\Rightarrow F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\)

mà \(-3\left(x-\dfrac{5}{6}\right)^2\le0,\forall x\)

\(\Rightarrow F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\)

\(\Rightarrow GTLN\left(F\right)=\dfrac{97}{12}\left(tạix=\dfrac{5}{6}\right)\)

1: Ta có: \(x^2-2x-5\)

\(=x^2-2x+1-6\)

\(=\left(x-1\right)^2-6\ge-6\forall x\)

Dấu '=' xảy ra khi x=1

2: ta có: \(3x^2+5x-2\)

\(=3\left(x^2+\dfrac{5}{3}x-\dfrac{2}{3}\right)\)

\(=3\left(x^2+2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{49}{36}\right)\)

\(=3\left(x+\dfrac{5}{6}\right)^2-\dfrac{49}{12}\ge-\dfrac{49}{12}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{5}{6}\)

18 tháng 12 2016

\(A=\frac{3x^2+9x+17}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}\)

Có: \(3x^2+9x+7=3\left(x^2+3x+\frac{9}{4}\right)+\frac{1}{4}=3\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)

Vì: \(3\left(x+\frac{3}{2}\right)^2\ge0,\forall x\)

=> \(3\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

=>\(\frac{10}{3\left(x+\frac{3}{2}\right)^2+\frac{1}{4}}\le40\)

=> \(1+\frac{10}{3\left(x+\frac{3}{2}\right)^2+\frac{41}{4}}\le41\)

Vậy GTLN của A là \(\frac{81}{41}\) khi \(x=-\frac{3}{2}\)

18 tháng 12 2016

HELP ME !!!

24 tháng 11 2021

ai trả lời giúp với