Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm giá trị lớn nhất của P = \(\dfrac{|x-2022|-|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)
a) \(M=2022-\left|x-9\right|\le2022\)
\(maxM=2022\Leftrightarrow x=9\)
b) \(N=\left|x-2021\right|+2022\ge2022\)
\(minN=2022\Leftrightarrow x=2021\)
A(1/2^2022)=1/2^2022+1/2^4044+...+1/2^(2022^2021)
=>2^2022*A=1+1/2^2022+...+1/2^(2022^2020)
=>A*(2^2022-1)=1-1/2^(2022^2021)
=>\(A=\dfrac{2^{2022^{2021}}-1}{2^{2022}-1}\)
A = \(\dfrac{1}{\left|x+1\right|+\left|x-2022\right|}\)
Đặt B = \(\left|x+1\right|+\left|x-2022\right|\)
\(\left|x-2022\right|\) = \(\left|2022-x\right|\) ⇒ B = \(\left|x+1\right|+\left|2022-x\right|\)
B =\(\left|x+1\right|+\left|2022-x\right|\) ≥ \(\left|x+1+2022-x\right|\) = 2023
B(min) = 2023 ⇔ (\(x+1\))(2022-\(x\)) \(\ge\) 0
Lập bảng ta có:
\(x\) | -1 2022 |
\(x+1\) | - 0 + | + |
\(2022-x\) | + | + 0 - |
(\(x+1\))(\(2022-x\)) | - 0 + 0 - |
Theo bảng trên ta có: B(min) = 2023 ⇔ -1 ≤ \(x\) ≤ 2022
A = \(\dfrac{1}{\left|x+1\right|+\left|x-2022\right|}\)
Vì A dương nên A(max) ⇔ B(min) ⇔ B = 2023
A(max) = \(\dfrac{1}{2023}\) ⇔ -1 ≤ \(x\) ≤ 2022
làm nốt câu này rồi đi ngủ
\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)
Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN
Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)
Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được :
\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)
Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)
Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)
Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)