Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(x^2=3-2\sqrt{2}\)
nên \(x=\sqrt{2}-1\)
Thay \(x=\sqrt{2}-1\) vào A, ta được:
\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)
a) A = \(\sqrt{-x^2+x+\dfrac{3}{4}}=\sqrt{1-\left(x-\dfrac{1}{2}\right)^2}\le\sqrt{1}=1\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
Vậy max A = 1 (khi và chỉ khi x = \(\dfrac{1}{2}\))
b) B = \(\sqrt{\left(2x^2-x-1\right)^2+9}\ge\sqrt{9}=3\) (dấu "=" xảy ra \(\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow x=1;x=-\dfrac{1}{2}\)).
Vậy min B = 3 (khi và chỉ khi x = 1 hoặc x = \(-\dfrac{1}{2}\))
c) C = \(\left|5x-2\right|+\left|5x\right|=\left|2-5x\right|+\left|5x\right|\);
C \(\ge\left|2-5x+5x\right|=\left|2\right|=2\) (dấu "=" xảy ra \(\Leftrightarrow\left(2-5x\right).5x\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2-5x\ge0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x\le0\\2-5x\le0\end{matrix}\right.\)
\(\Leftrightarrow0\le x\le\dfrac{2}{5}\)).
Vậy min C = 2 (khi và chỉ khi \(0\le x\le\dfrac{2}{5}\))
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)
\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)
\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)
\(\Rightarrow y=2x+3\)
\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy
Ta có :A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\) -\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\)
=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)-2
=\(\dfrac{-\sqrt{x}}{\sqrt{x}+1}\)
thay vào A=\(\dfrac{-2}{3}\)
b)
A=-1+\(\dfrac{1}{\sqrt{x}+1}\) \(\ge\) -1+\(\dfrac{1}{1}\)=1(vì \(\sqrt{x}\)\(\ge\) 0)
Dấu bằng xẩy ra\(\Leftrightarrow\) x=0
chỗ đó cho thêm x-1 nha
đấu >= thay thành <= rùi nhân thêm x-1>=-1 nữa là lớn nhất bằng 0
ĐKXĐ : \(x\ge0\)
\(A=-x-\left|4x-9\right|+3\sqrt{x}+4\)
\(A=-\left(x-3\sqrt{x}+\frac{9}{4}\right)-\left|4x-9\right|+\frac{25}{4}\)
\(A=-\left(\sqrt{x}-\frac{3}{2}\right)^2-\left|4x-9\right|+\frac{25}{4}\le\frac{25}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(\sqrt{x}-\frac{3}{2}\right)^2=0\\\left|4x-9\right|=0\end{cases}\Leftrightarrow x=\frac{9}{4}}\)
...