K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2017

x^2*(x-30)-31x+1

thay x=31 vao bieu thuc 

(31)^2*(31-30)-31*31+1=1

31 tháng 8 2016

mình mới làm được phần b thôi :

B=\(\frac{x^2+x+3}{x+1}=\frac{x.x+x+3}{x+1}=\frac{x\left(x+1\right)+3}{x+1}=\frac{x\left(x+1\right)}{x+1}+\frac{3}{x+1}=x+\frac{3}{x+1}\)

Để B nhận giá trị nguyên => \(x+\frac{3}{x+1}\) phải có giá trị nguyên=> \(\frac{3}{x+1}\)phải có giá trị nghuyên => 3 chia hết cho x + 1=> x+1 thuộc ước của 3

x+1-33-11
x-42-20

vậy để B có giá trị nguyên => x =  -4; -2; 0; 2

31 tháng 8 2016

Gắng giúp mình phần a) nhé :)

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

27 tháng 6 2019

Bài 1:

Ta có: \(6.|3x-12|\ge0\forall x\)

\(\Rightarrow23+6.|3x-12|\ge23+0\forall x\)

Hay \(A\ge23\forall x\)

Dấu"=" xảy ra \(\Leftrightarrow3x-12=0\)

                        \(\Leftrightarrow x=4\)

Vậy Min A=23 \(\Leftrightarrow x=4\)

27 tháng 6 2019

Bài 2:

Ta có: \(5.|14-7x|\ge0\forall x\)

\(\Rightarrow-5.|14-7x|\le0\forall x\)

\(\Rightarrow2019-5.|14-7x|\le2019-0\forall x\)

Hay \(B\le2019\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow14-7x=0\)

                        \(\Leftrightarrow x=2\)

Vậy Max B=2019 \(\Leftrightarrow x=2\)

1 tháng 7 2016

bạn nào giải nhanh giúp mình

1 tháng 7 2016

Vì |x-2| \(\ge\) 0 với mọi x

=>\(\frac{1}{2}-\left|x-2\right|\le\frac{1}{2}\) với mọi x

=>MaxA=1/2

Dấu "=" xảy ra <=> \(\left|x-2\right|=0< =>x=2\)

Vậy..............

3 tháng 8 2016

Với giá trị nguyên nào của x thì biểu thức A = 14-x/4-x có giá trị lớn nhất ? Tìm giá trị đó

A = 14 - x / 4 - x

để A có giá trị lớn nhất thì A > 0 = > x < 4 = 4 -x bé nhất 

= > x = { 1 ; 2 ; 3 }

để 4 trừ x bé nhất thì x = 3 

giá trị đó là : 14 - 3 / 4 - 3 = 11 / 1 = 11

3 tháng 8 2016

ta có :

A = 14 - x / 4 - x

để A có giá trị lớn nhất thì A > 0 = > x < 4 = 4 -x bé nhất 

= > x = { 1 ; 2 ; 3 }

để 4 trừ x bé nhất thì x = 3 

giá trị đó là : 14 - 3 / 4 - 3 = 11 / 1 = 11

17 tháng 12 2021

a) \(M=2022-\left|x-9\right|\le2022\)

\(maxM=2022\Leftrightarrow x=9\)

b) \(N=\left|x-2021\right|+2022\ge2022\)

\(minN=2022\Leftrightarrow x=2021\)

a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)

nên Dấu '=' xảy ra khi x-2=0

hay x=2

Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2