Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điểm SP: 1175415162545444444. Điểm GP: 999999999999999. Tổng: 5555555555777777777767888888888
Vip: 1000
\(A=2006-\frac{x}{6-x}\le2006\)
Min \(A=2006\Leftrightarrow\frac{x}{6-x}=0\Rightarrow x=0\)
\(B=\left|x-2001\right|+\left|x+1\right|\ge0\)
Min \(B=0\Leftrightarrow\hept{\begin{cases}x-2001=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2001\\x=-1\end{cases}}}\)
Vì / x +\(\frac{3}{4}\)/ \(\ge\)0
\(\Rightarrow\)/x+\(\frac{3}{4}\)/ - 28 \(\ge\)-28
Dấu = xảy ra \(\Leftrightarrow\)/x+\(\frac{3}{4}\)/ = 0
\(\Rightarrow\)x= -3/4
Vậy A min = -28\(\Leftrightarrow\)x=-3/4
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0
=> giá trị tuyệt đối x+10 cộng với 2005
sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005
Dấu bằng xảy ra <=> giá trị tuyệt đối x+10 bằng 0
=> x=-10
Vậy Min B = 2005 <=> x=-10
Ý bạn là \(\frac{1}{x^2+2000}hả\)
Ta có :
\(x^2>0\)với mọi x
\(\Rightarrow\frac{1}{x^2}\le1\)với mọi x
\(\Rightarrow\frac{1}{x^2}+2010\le2011\)với mọi x
Vậy giá trị lớn nhất của biểu thức là \(2001\Leftrightarrow x=1\)