Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{2\sqrt{x}+6+\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{3}{\sqrt{x}+3}\)
b: \(\sqrt{x}+3>=3\)
=>A<=1
Dấu = xảy ra khi x=0
c: \(P=A:\left(B-1\right)=\dfrac{3}{\sqrt{x}+3}:\dfrac{2\sqrt{x}+1-\sqrt{x}-3}{\sqrt{x}+3}=\dfrac{3}{\sqrt{x}-2}\)
Để P nguyên thì căn x-2\(\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{1;25\right\}\)
a) Thay x=4 vào biểu thức \(B=\dfrac{3}{\sqrt{x}-1}\), ta được:
\(B=\dfrac{3}{\sqrt{4}-1}=\dfrac{3}{2-1}=3\)
Vậy: Khi x=4 thì B=3
b) Ta có: P=A-B
\(\Leftrightarrow P=\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x}-1}\)
\(\Leftrightarrow P=\dfrac{6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{6+x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
a: \(P=\dfrac{\sqrt{x}+1-2\sqrt{x}+4+2\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=\dfrac{1}{\sqrt{x}+1}\)
b: căn x+1>=1
=>P<=1
Dấu = xảy ra khi x=0
a.\(P=\dfrac{3\left(x+\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(ĐK:x\ge0;x\ne1;x\ne-2\)
\(P=\dfrac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3x+3\sqrt{x}-9+x-\sqrt{x}+3\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)
b.\(P=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}+2}+\dfrac{2}{\sqrt{x}+2}\)
\(=1+1+1+\dfrac{2}{\sqrt{x}+2}\)
Để P lớn nhất thì \(\sqrt{x}+2\) nhỏ nhất
Mà \(\sqrt{x}+2\ge2\) \(\Rightarrow Min=2\)
\(\Rightarrow P\le1+1+1+\dfrac{2}{2}=1+1+1+1=4\)
Vậy \(P_{max}=4\) khi \(x=0\)
\(P=\dfrac{\sqrt{x}+1+3}{\sqrt{x}+1}=1+\dfrac{3}{\sqrt{x}+1}\)
P lớn nhất khi căn x+1=1
=>x=0
đkxđ: \(z\ge1;x\ge2;y\ge3\)
Đặt \(a=\sqrt{z-1}\ge0;b=\sqrt{x-2}\ge0;c=\sqrt{y-3}\ge0\)
\(\Rightarrow z=a^2+1;x=b^2+2;y=c^2+3\)
\(\Rightarrow A=\dfrac{a}{a^2+1}+\dfrac{b}{b^2+2}+\dfrac{c}{c^2+3}\)
Do các biến \(a,b,c\) độc lập nhau nên ta xét từng phân thức một.
Đặt \(f\left(a\right)=\dfrac{a}{a^2+1}\) \(\Rightarrow f\left(a\right).a^2-a+f\left(a\right)=0\) (*)
Nếu \(f\left(a\right)=0\) thì \(a=0\), rõ ràng đây không phải là GTLN cần tìm.
Xét \(f\left(a\right)\ne0\)
Để pt (*) có nghiệm thì \(\Delta=\left(-1\right)^2-4\left[f\left(a\right)\right]^2\ge0\)
\(\Leftrightarrow\left(1+2f\left(a\right)\right)\left(1-2f\left(a\right)\right)\ge0\)
\(\Leftrightarrow-\dfrac{1}{2}\le f\left(a\right)\le\dfrac{1}{2}\)
\(f\left(a\right)=\dfrac{1}{2}\Leftrightarrow\dfrac{a}{a^2+1}=\dfrac{1}{2}\Leftrightarrow a^2+1=2a\Leftrightarrow a=1\) (nhận)
Vậy \(max_{f\left(a\right)}=\dfrac{1}{2}\).
Tiếp đến, gọi \(g\left(b\right)=\dfrac{b}{b^2+2}\) \(\Rightarrow g\left(b\right).b^2-b+2g\left(b\right)=0\) (**)
Tương tự nếu \(b=0\) thì vô lí. Xét \(b\ne0\). Khi đó để (**) có nghiệm thì \(\Delta=\left(-1\right)^2-8\left[g\left(b\right)\right]^2\ge0\)
\(\Leftrightarrow\left(1-2\sqrt{2}g\left(b\right)\right)\left(1+2\sqrt{2}g\left(b\right)\right)\ge0\)
\(\Leftrightarrow-\dfrac{1}{2\sqrt{2}}\le g\left(b\right)\le\dfrac{1}{2\sqrt{2}}\)
\(g\left(b\right)=\dfrac{1}{2\sqrt{2}}\Leftrightarrow\dfrac{b}{b^2+2}=\dfrac{1}{2\sqrt{2}}\Leftrightarrow b^2+2=2\sqrt{2}b\Leftrightarrow b=\sqrt{2}\) (nhận)
Vậy \(max_{g\left(b\right)}=\dfrac{1}{2\sqrt{2}}\)
Làm tương tự với \(h\left(c\right)=\dfrac{c}{c^2+3}\), ta được \(max_{h\left(c\right)}=\dfrac{1}{2\sqrt{3}}\), xảy ra khi \(c=\sqrt{3}\)
Vậy GTLN của A là \(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{6+3\sqrt{2}+2\sqrt{3}}{12}\), xảy ra khi \(\left(a,b,c\right)=\left(1,\sqrt{2},\sqrt{3}\right)\) hay \(\left(x,y,z\right)=\left(2,4,6\right)\).
Tìm giá trị lớn nhất của
N=\(\dfrac{2x+5}{\sqrt{x}+1}\) khi x≥9
F=\(\dfrac{x+3}{\sqrt{x}+1}\) khi x≥4
Hai biểu thức này chỉ có min thui bạn nhé.
1.
\(N=\frac{2x+5}{\sqrt{x}+1}=\frac{2\sqrt{x}(\sqrt{x}+1)-2(\sqrt{x}+1)+7}{\sqrt{x}+1}=2\sqrt{x}-2+\frac{7}{\sqrt{x}+1}\)
\(=2(\sqrt{x}+1)+\frac{7}{\sqrt{x}+1}-4\)
\(=\frac{7}{16}(\sqrt{x}+1)+\frac{7}{\sqrt{x}+1}+\frac{25}{16}(\sqrt{x}+1)-4\)
\(\geq 2\sqrt{\frac{7}{16}.7}+\frac{25}{16}(\sqrt{9}+1)-4=\frac{23}{4}\) (theo BĐT AM-GM)
Vậy $N_{\min}=\frac{23}{4}$ khi $x=9$
2.
\(F=\frac{x+3}{\sqrt{x}+1}=\frac{\sqrt{x}(\sqrt{x}+1)-(\sqrt{x}+1)+4}{\sqrt{x}+1}=\sqrt{x}-1+\frac{4}{\sqrt{x}+1}\)
\(=\frac{4}{9}(\sqrt{x}+1)+\frac{4}{\sqrt{x}+1}+\frac{5\sqrt{x}}{9}-\frac{13}{9}\)
\(\geq 2\sqrt{\frac{4}{9}.4}+\frac{5\sqrt{4}}{9}-\frac{13}{9}=\frac{7}{3}\)
Vậy $F_{\min}=\frac{7}{3}$ khi $x=4$
Vì `x>0` nên ta chia 2 vế tử và mẫu cho `sqrtx>0`
`=>sqrx/(x-sqrtx+1)`
`=1/(sqrtx-1+1/sqrtx)`
Áp dụng cosi:
`sqrtx+1/sqrtx>=2`
`=>sqrtx-1+1/sqrtx>=1`
`=>1/(sqrtx-1+1/sqrtx)<=1`
Hay `sqrtx/(x-sqrtx+1)<=1`
Dấu "=" `<=>x=1`
\(B=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{0+\dfrac{3}{4}}=\dfrac{4}{3}\)Dấu = xảy ra khi và chỉ khi x=1/4