Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A có giá trị nhỏ nhất khi \(\sqrt{x+2}=0\)
Vậy giá trị nhỏ nhất của A là \(\dfrac{3}{11}\).
b) Ta có: -3\(\sqrt{x-5}\) \(\le0\)
=> B có giá trị lớn nhất khi -3\(\sqrt{x-5}\) = 0
Vậy giá trị lớn nhất của B là \(\dfrac{5}{17}\).
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}
\(B=\frac{2\sqrt{x}+5}{\sqrt{x}+2}=\frac{2\sqrt{x}+4+1}{\sqrt{x}+2}=\frac{2.\left(\sqrt{x}+2\right)}{\sqrt{x}+2}+\frac{1}{\sqrt{x}+2}=2+\frac{1}{\sqrt{x}+2}\)
Để B lớn nhất thì \(\frac{1}{\sqrt{x}+2}\) lớn nhất hay \(\sqrt{x}+2\) nhỏ nhất
Có: \(\sqrt{x}+2\ge0\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Khi x = 0 thì \(B=\frac{2\sqrt{0}+5}{\sqrt{0}+2}=\frac{0+5}{0+2}=\frac{5}{2}\)
Vậy GTLN của B là \(\frac{5}{2}\) khi x = 0
\(B=\frac{5}{17}-3\sqrt{x-5}\)
Vì: \(-3\sqrt{x-5}\le0\) với mọi \(x\ge5\)
=> \(\frac{5}{17}-3\sqrt{x-5}\le\frac{5}{17}\)
Vậy GTLN của B là \(\frac{5}{17}\) khi x=5