\(A=\frac{x^2-6x+2024}{x^2}\)

\(C=\fr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

\(P_1=\frac{3x^2+6x+10}{x^2+2x+3}\)

      \(=3+\frac{1}{x^2+2x+3}\)

Lại có: \(x^2+2x+3\)

          \(=\left(x+1\right)^2+2\ge2\)

\(\Rightarrow P_1\le3+\frac{1}{2}=\frac{7}{2}\)

Dấu = xảy ra khi x=-1

P2 tương tự

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

Điều kiện : \(x^2-9\ne0\Rightarrow\orbr{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)

Để \(\frac{3x-2}{x^2-9}=0\)

\(\Rightarrow3x-2=0\)

\(\Rightarrow x=\frac{2}{3}\)

13 tháng 8 2016

Để phân thức \(\frac{3x-2}{x^2-9}=0\)thì \(3x-2=0\)

\(3x=2\)

\(x=\frac{2}{3}\)

11 tháng 12 2016

Không chép lại đề nhé:

\(1A=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(=\frac{x+3}{x^2+9}.\frac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}\)

\(=\frac{x+3}{x-3}\)

11 tháng 12 2016

b/ Với x > 0 thì P không xác định khi x = 3 (vì mẫu sẽ = 0)

c/ \(A=\frac{x+3}{x-3}=1+\frac{6}{x-3}\)

Để A nguyên thì (x - 3) phải là ước nguyên của 6 hay

(x - 3) \(\in\)(- 1; - 2; - 3, - 6; 1; 2; 3; 6)

Thế vào sẽ tìm được A

ĐKXĐ thì b tự làm nhé 

31 tháng 3 2018

\(A=\left(\frac{3-x}{x+3}\times\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\) \(\left(ĐKXĐ:x\ne\pm3\right)\)

\(A=\left(\frac{3-x}{x+3}\times\frac{x+3}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left[\frac{\left(3-x\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right]:\frac{3x^2}{x+3}\)

\(A=\left(\frac{9-3x}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)

\(A=\frac{-3}{x+3}\times\frac{x+3}{3x^2}\)

\(A=\frac{-1}{x^2}\)

31 tháng 3 2018

Ta có :\(x^2+x-6=0\)

\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(L\right)\\x=2\left(tm\right)\end{cases}}\)

\(\Rightarrow A=\frac{-1}{2^2}\)

\(A=\frac{-1}{4}\)