Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2x^2+9y^2-6xy-6x-12y+2014\)
\(=\left(2x^2-6xy-6x\right)+\left(9y^2-12y\right)+2014\)
\(=2\left[x^2-2.x.\frac{3\left(y+1\right)}{2}+\frac{9\left(y+1\right)^2}{4}\right]+\left[9y^2-12y-\frac{9}{2}.\left(y+1\right)^2\right]+2014\)
\(=2\left[x-\frac{3\left(y+1\right)}{2}\right]^2+\frac{1}{2}\left(3y-7\right)^2+1985\ge1985\)
Dấu "=" xảy ra khi và chỉ khi y = \(\frac{7}{3}\Rightarrow x=5\)
Vậy Min A = 1985 tại \(\left(x;y\right)=\left(5;\frac{7}{3}\right)\)
b) \(B=-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2-2xy-2x\right)-\left(4y^2-10y\right)-8\)
\(=-\left[x^2-2x\left(y+1\right)+\left(y+1\right)^2\right]-\left[4y^2-10y-\left(y+1\right)^2\right]-8\)
\(=-\left(x-y-1\right)^2-\left(y-2\right)^2+5\le5\)
Dấu đẳng thức xảy ra khi và chỉ khi y = 2 => x = 3
Vậy B đạt giá trị lớn nhất bằng 5 tại (x;y) = (3;2)
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
Ta có: \(A=3-x^2+2x-4y^2-12y\)
\(A=-\left(x^2-2x+1\right)-\left(4y^2+12y+9\right)+13\)
\(A=-\left(x-1\right)^2-\left(2y+3\right)^2+13\)
\(A=-\left[\left(x-1\right)^2+\left(2y+3\right)^2\right]+13\)
Ta thấy: \(\left(x-1\right)^2\ge0\forall x\)
\(\left(2y+3\right)^2\ge0\forall y\)
=> \(\left(x-1\right)^2+\left(2y+3\right)^2\ge0\forall x;y\)
=> \(-\left[\left(x-1\right)^2+\left(2y+3\right)^2\right]\le0\forall x;y\)
=> \(-\left[\left(x-1\right)^2+\left(2y+3\right)^2\right]+13\le13\forall x;y\)
=> \(A\le13\forall x;y\)
Dấu "=" xảy ra khi x=1; y=-3/2
Vậy GTLN của A là 13 khi x=1; y=-3/2
bruh