Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M=2018+|1-2x|
nhận thấy:|1-2x|>=0 với mọi x=> M =2018+|1-2x|>=2018
dấu"=" xảy ra <=>|1-2x|=0<=>1-2x=0=>2x=1=>x=1/2
vậy giá trị nhỏ nhất của M=2018<=>x=1/2
b)N=2018-(1-2x)^2018
nhận thấy;(1-2x)^2018>=0 với mọi x=>-(1-2x)<=0 với mọi x=>N=2018-(1-2x)^2018<=2018
dấu bằng xảy ra <=>(1-2x)^2018=0=>1-2x=0=>2x=1=>x=1/2
vậy giá trị lớn nhất của N=2018<=>x=1/2
c)P=7+|x-1|+|2-x|
áp dụng |A|+|B|>=|A+B|. dấu "=" xảy ra<=>A.B=0 ta có
P=7+|x-1|+|2-x|>=7+|x-1+2-x|=7+1+8
dấu "=" xảy ra <=>(x-1). (2-x)=0
<=>x-1=0 hoặc 2-x=0<=>x=1 hoặc x=2
vậy giá trị nhỏ nhất của P=8<=> x=1 hoặc x=2
1/
S35= (1-2)+(3-4)+...+(33-34)+ (-1)^(35-1).35
S35=-1-1-1-...-1+35
S35=-17+35=18
S60=(1-2)+(3-4)+..+(57-58)+59+(-1)^(60-1).60
S60=-1-1-1...-1+(59-60)
S60=-30
Vậy S35+S60=18-30=-12
2/
a/ A=n.(-4):2=-2n
b/ Mình chưa hiểu đề lắm. Bạn có thể hỏi thầy cách giải rồi up lên cho mọi người không
Giải:
Ta có:
Để \(A_{Max}\Leftrightarrow\dfrac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\) lớn nhất
Để \(\dfrac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\) lớn nhất thì \(6\left|x+1\right|+8\) phải nhỏ nhất
Để \(6\left|x+1\right|+8\) nhỏ nhất thì \(6\left|x+1\right|\) nhỏ nhất
Mà \(6\left|x+1\right|\ge0;\forall x\)
\(\Rightarrow\) Giá trị nhỏ nhất của \(6\left|x+1\right|\) là 0
\(\Rightarrow x=-1\)
Giá trị của A là: \(\dfrac{15\left|-1+1\right|+32}{6\left|-1+1\right|+8}=\dfrac{15.0+32}{6.0+8}=4\)
Vậy giá trị lớn nhất của A là 4 khi và chỉ khi x = -1
Chúc bạn học tốt!
\(A=\dfrac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\ge\dfrac{32}{8}=4\)
Dấu "=" xảy ra khi: \(x=-1\)
\(A=\left|x-1\right|+2018\)
ta có :
\(\left|x-1\right|\ge0\)
\(\Rightarrow\left|x-1\right|+2018\ge0+2018\)
\(\Rightarrow\left|x-1\right|+2018\ge2018\)
dấu "=" xảy ra khi :
\(\left|x-1\right|=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
vậy MinA = 2018 khi x = 1
Bạn nào thông minh giải cả 3 câu hộ mình luôn nha. mk đang cần gấp các bạn ơi
Vì \(\left|x+\frac{1}{2}\right|\ge0;\left|x+\frac{1}{3}\right|\ge0;\left|x+\frac{1}{6}\right|\ge0\) với mọi x
=>\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|\ge0\) với mọi x
=>\(4x\ge0=>x\ge0\), do đó PT ban đầu trở thành:
\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x< =>3x+1=4x< =>x=1\)
Vậy x=1
A chỉ có giá trị lớn nhất khi |x+1|=0
\(\Rightarrow\)x = -1
ta có : A =\(\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)=\(\frac{15\left|-1+1\right|+32}{6\left|-1+1\right|+8}\)=\(\frac{15.0+32}{6.0+8}\)=\(\frac{32}{8}\)=4
Vậy giá trị lớn nhất của A là 4
A= 4 nha bạn.