Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BT1: a) Ta có: /3,4 - x/\(\ge\) 0 =>1,7 + /3,4 - x/\(\ge\)1,7
Đẳng thức xảy ra khi : 3,4 - x = 0 => x = 3,4
Vậy giá trị nhỏ nhất của 1,7 + /3,4 - x/ là 1,7 khi x = 3,4.
b) Ta có: /x + 2,8/\(\ge\) 0 => /x + 2,8/ - 3,5\(\ge\)-3,5
Đẳng thức xảy ra khi : x + 2,8 = 0 => x = -2,8
Vậy giá trị nhỏ nhất của /x + 2,8/ - 3,5 là -3,5 khi x = -2,8.
c)Ta có: /x - 300/ = /300 - x/ => /x - 500/ + /x - 300/ = /x - 500/ + /300 - x/\(\ge\)/x - 500 + 300 - x/ = 200
Đẳng thức xảy ra khi: (x - 500) x (300 -x ) = 0 => x = 500 hoặc x = 300
Vậy giá trị nhỏ nhất của /x - 500/ + /x - 300/ là 200 khi x = 500 hoặc x = 300.
BT2: a) Ta có: /x - 3,5/\(\ge\)0 => -/x - 3,5/\(\le\)0 => 0,5 + ( -/x - 3,5/ ) = 0,5 - /x - 3,5/ \(\le\)0,5
Đẳng thức xảy ra khi: x - 3,5 = 0 => x = 3,5
Vậy giá trị lớn nhất của 0,5 - /x - 3,5/ là 0,5 khi x = 3,5.
b) Ta có: /1,4 - x/\(\ge\)0 => -/1,4 - x/\(\le\)0 => -/1,4 - x/ + (-2) = -/1,4 - x/ -2 \(\le\)-2
Đẳng thức xảy ra khi: 1,4 - x = 0 => x = 1,4
Vậy giá trị lớn nhất của -/1,4 - x/ -2 là -2 khi x = 1,4.
(Dấu // là giá trị tuyệt đối )
a ) Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|+\left|c\right|+\left|d\right|\ge\left|a+b+c+d\right|\)ta có :
\(A=\left|x-3\right|+\left|x-4\right|+\left|x-5\right|\)
\(A=\left|3-x\right|+\left|4-x\right|+\left|x-5\right|\ge\left|\left(3-x\right)+\left(4-x\right)+\left(x-5\right)\right|=\left|2\right|=2\)
Dấu " = " xảy ra khi : \(\hept{\begin{cases}x-5\le0\\x-4=0\\x-3\ge0\end{cases}\Rightarrow x=4}\)
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Ta có :
\(\left|3,4-x\right|\ge0\) với V x
\(\Rightarrow\left|3,4-x\right|+5\ge5\)với V x
\(\Rightarrow A\ge5\)với V x
\(\Rightarrow GTNN\)của \(A=5\)
Dấu bằng xảy ra khi :
\(\left|3,4-x\right|=0\)
\(\Rightarrow3,4-x=0\)
\(\Rightarrow x=3,4\)
tìm giá trị nhỏ nhất của biểu thức: A = giá trị tuyệt đối của x- 2001 + giá trị tuyệt đối của x - 1.
|x-2001|+|x-1|=|x-2001|+|1-x|
BĐT gttđ:|a+b| > |a+b|
áp dụng:=>|x-2001|+|1-x| > |(x-2001)+(1-x)|=2000
=>Amin=2000
dấu "=" xảy ra<=>(x-2001)(x-1)>0 tức 1<x<2000
a) \(A=0,5-\left|x-3,5\right|\le0,5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x-3,5\right|=0\Rightarrow x=3,5\)
Vậy Max(A) = 0,5 khi x = 3,5
b) \(C=1,7+\left|3,4-x\right|\ge1,7\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3,4-x\right|=0\Rightarrow x=3,4\)
Vậy Min(C) = 1,7 khi x = 3,4