K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

\(-2x^2-3x+5,875=-2\left(x^2+1.5x-2,9375\right)\)

\(=-2\left(x^2+1.5x+2,25-5,1875\right)\)

\(=-2\left[\left(x+1,5\right)^2-5,1875\right]\)

\(=-2\left(x+1,5\right)^2+10,375\)

Ta có: \(\left(x+1,5\right)^2\ge0\forall x\inℝ\)

\(\Rightarrow-2\left(x+1,5\right)^2\le0\forall x\inℝ\)

\(\Rightarrow-2\left(x+1,5\right)^2+10,375\le10,375\forall x\inℝ\)

(Dấu "="\(\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\))

Vậy GTLN của \(-2x^2-3x+5,875\)là 10,375\(\Leftrightarrow x=-1,5\)

7 tháng 2 2020

Sửa)):

Từ dòng 2

\(=-2\left(x^2+1,5x+0,5625-6,4375\right)\)

\(=-2\left(x+0,75\right)^2+12,875\le12,875\)

14 tháng 12 2018

\(P=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x+6\right)\left(x-1\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-6^2.P_{min}\Leftrightarrow x^2+5xđạtGTNN\)

\(x^2+5x\ge0\Leftrightarrow x\left(x+5\right)\ge0\)

Dấu "=" xảy ra <=> \(x\in\left\{0;-5\right\}\)

Vậy: Pmin=-36 <=> x E {0;-5}

14 tháng 12 2018

CHờ tí mk lm câu b

17 tháng 10 2016

a)\(A=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu = khi \(x=\frac{-1}{2}\)

Vậy MinA=10 khi \(x=\frac{-1}{2}\)

b)\(B=3x^2-6x+1\)

\(=3x^2-6x+3-2\)

\(=3\left(x^2-2x+1\right)-2\)

\(=3\left(x-1\right)^2-2\ge-2\)

Dấu = khi \(x=1\)

Vậy MinB=-2 khi \(x=1\)

c)\(C=x^2-2x+y^2-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

1 tháng 5 2018

Bài 1 :

a) \(a\ne x\)

b) Tại a= 2 PT

\(\Leftrightarrow\left(5.2-8\right)x=2014\)

\(\Leftrightarrow2x=2014\)

\(\Leftrightarrow x=1007\) 

Vậy tập nghiệm của phương trình đã cho khi a=2 là \(S=\left(1007\right)\)

Bài 2 

Ta có :\(f\left(x\right)=2x^2-12x+14\)

                   \(=2\left(x^2-6x+9\right)-4\)

                \(=2\left(x-3\right)^2-4\ge-4\)

Dấu \("="\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy GTNN của \(f\left(x\right)\)là \(-4\)khi \(x=3\)

Nhớ K cho tớ nhé

2 tháng 12 2017

x2-3.(x-1)

(x-1)2

=>x2-3

x-1

3 tháng 11 2016

Câu 1:

(2x - 3)2 - 4 (x - 3) (x + 3) = (-11)

<=> (4x- 12x +9) - 4 . (X2 - 9) + 11 =0

<=> 4x2 - 12x + 9 - 4x2 + 36 + 11 = 0

<=> -12x + 46 = 0

<=> X = 23/6

3 tháng 11 2016

Câu 2: 

x2 + 4x - y2 + 4y = 0

<=> (x2 - y2) + (4x + 4y) = 0

<=> (x + y) (x - y) + 4 (x + y) = 0

<=> (x+y) (x - y + 4) = 0

3 tháng 8 2016

a) Xét mẫu thức : \(x^3-3x-18=\left(x-3\right)\left(x^2+3x+6\right)\)

\(M=\frac{x-3}{x^3-3x-18}=\frac{x-3}{\left(x-3\right)\left(x^2+3x+6\right)}=\frac{1}{x^2+3x+6}=\frac{1}{\left(x+\frac{3}{2}\right)^2+\frac{15}{4}}\le\frac{4}{15}\)

Dấu "=" xảy ra <=> x = -3/2

Vậy Max M = 4/15 tại x = -3/2

b) \(N=\frac{x^2+x+1}{x^2+2x+1}=\frac{x^2+x+1}{\left(x+1\right)^2}\). Đặt \(y=x+1\)\(\Rightarrow x=y-1\)

Suy ra \(N=\frac{\left(y-1\right)^2+\left(y-1\right)+1}{y^2}=\frac{y^2-y+1}{y^2}=\frac{1}{y^2}-\frac{1}{y}+1\)

Lại đặt \(t=\frac{1}{y}\)\(N=t^2-t+1=\left(t-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> \(t=\frac{1}{2}\Leftrightarrow y=2\Leftrightarrow x=1\)

Vậy Min N = 3/4 tại x = 1