Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(I=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+2021\)
\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2021\)
\(=-\left[\left(x^2+5x\right)^2-6^2\right]+2021\)
\(=-\left(x^2+5x\right)^2+2057\le2057\)
\(I_{max}=2057\) khi \(x^2+5x=0\)
\(K=-\left(x-2\right)\left(x-7\right)\left(x-5\right)\left(x-4\right)+102\)
\(=-\left(x^2-9x+14\right)\left(x^2-9x+20\right)+102\)
\(=-\left(x^2-9x+14\right)\left(x^2+9x+14+6\right)+102\)
\(=-\left[\left(x^2-9x+14\right)^2+6\left(x^2-9x+14\right)\right]+102\)
\(=-\left[\left(x^2-9x+14\right)+6\left(x^2-9x+14\right)+9-9\right]+102\)
\(=-\left(x^2-9x+17\right)^2+111\le111\)
\(K_{max}=111\) khi \(x^2-9x+17=0\)
\(M=-\left(4x^2+4x+1\right)\left(16x^2+16x+3\right)-11\)
Đặt \(4x^2+4x+1=t\Rightarrow16x^2+16x=4t-4\)
\(\Rightarrow M=-t\left(4t-4+3\right)-11\)
\(M=-4t^2+t-11\)
\(M=-4\left(t-\dfrac{1}{8}\right)^2-\dfrac{175}{16}\le-\dfrac{175}{16}\)
\(M_{max}=-\dfrac{175}{16}\) khi \(t=\dfrac{1}{8}\)
a) \(A=-x^2+2x=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\)
\(maxA=1\Leftrightarrow x=1\)
b) \(B=\left(2-3x\right)\left(3+2x\right)=-6x^2-5x+6=-6\left(x^2+\dfrac{5}{6}x+\dfrac{25}{144}\right)+\dfrac{169}{24}=-6\left(x+\dfrac{5}{12}\right)^2+\dfrac{169}{24}\le\dfrac{169}{24}\)
\(minB=\dfrac{169}{24}\Leftrightarrow x=-\dfrac{5}{12}\)
c) \(C=4xy-4x-2y-4x^2-2y^2-3=-\left[4x^2-4x\left(y-1\right)+\left(y-1\right)^2\right]+\left(y^2-4y+4\right)-6=\left(2x-y+1\right)^2+\left(y-2\right)^2-6\le-6\)
\(minC=-6\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=2\end{matrix}\right.\)
\(A=-x^2+2xy-4y^2+2x+10y-3\)
\(=-x^2+2xy-y^2+2x-2y-1-3y^2+12y-12+10\)
\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)+10\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10< =10\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y+1=3\end{matrix}\right.\)
\(B=-4x^2-5y^2+8xy+10y+12\)
\(=-4x^2+8xy-4y^2-y^2+10y-25+37\)
\(=-4\left(x^2-2xy+y^2\right)-\left(y^2-10y+25\right)+37\)
\(=-4\left(x-y\right)^2-\left(y-5\right)^2+37< =37\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\)
=>x=y=5
Bài 1:
b: \(=\left(x-2y\right)\left(x+2y\right)+4\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+4\right)\)
c: \(=\left(x+y-3\right)\left(x+y+3\right)\)
Bài 1:
a: \(3xy^2-12x=3x\left(y^2-4\right)=3x\left(y-2\right)\left(y+2\right)\)
b: \(x^2-4y^2+4x+8y\)
\(=\left(x-2y\right)\left(x+2y\right)+4\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y+4\right)\)
a: A=(x-1)(x-3)(x2-4x+5)
\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)
\(=\left(x^2-4x\right)^2+8\left(x^2-4x\right)+15\)
\(=\left(x^2-4x+4\right)^2-1\)
\(=\left(x-2\right)^4-1>=-1\)
Dấu = xảy ra khi x-2=0
=>x=2
b: \(B=x^2-2xy+2y^2-2y+1\)
\(=x^2-2xy+y^2+y^2-2y+1\)
\(=\left(x-y\right)^2+\left(y-1\right)^2>=0\)
Dấu = xảy ra khi x-y=0 và y-1=0
=>x=y=1
c: \(C=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+5\)
\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+5\)
\(=-\left[\left(x^2+5x\right)^2-36\right]+5\)
\(=-\left(x^2+5x\right)^2+36+5\)
\(=-\left(x^2+5x\right)^2+41< =41\)
Dấu = xảy ra khi \(x^2+5x=0\)
=>x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
a) Ta có A = -4x2 - 12x = -4x2 - 12x - 9 + 9 = -(2x + 3)2 + 9 \(\le9\)
Dấu "=" xảy ra <=> 2x + 3 = 0
<=> x = -1,5
Vậy Max A = 9 <=> x = -1,5
b) Ta có B = 7 - x2 - y2 - 2(x + y)
= -x2 - 2x - 1 - y2 - 2y - 1 + 9
= -(x + 1)2 - (y + 1)2 + 9 \(\le9\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1=0\\y+1=0\end{cases}}\Leftrightarrow x=y=-1\)
Vậy Max B = 9 <=> x = y = -1
\(A=-\left(4x^2+12x\right)\)
\(A=-\left(4x^2+12x+9\right)+9\)
\(A=-\left(2x+3\right)^2+9\le9\)
\(< =>MAX:A=9\)dấu "=" xảy ra khi \(2x+3=0< =>x=-\frac{3}{2}\)
\(B=7-x^2-y^2-2x-2y\)
\(B=7-\left(x^2+2x\right)-\left(y^2+2y\right)\)
\(B=9-\left(x^2+2x+1\right)-\left(y^2+2y+1\right)\)
\(B=9-\left(x+1\right)^2-\left(y+1\right)^2\le9\)
\(< =>MAX:B=9\)dấu "=" xảy ra khi \(\hept{\begin{cases}x+1=0\\y+1=0\end{cases}\hept{\begin{cases}x=-1\\y=-1\end{cases}}}\)