Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(15\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+30\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=40\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2007\)
\(\Leftrightarrow15\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=40\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+2007\)
\(\Leftrightarrow15\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le\frac{40}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+2007\)
\(\Leftrightarrow\frac{5}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\le2007\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\sqrt{\frac{6021}{5}}\)
Ta có:
\(5a^2+2ab+2b^2=4a^2+2ab+b^2+a^2+b^2\ge4a^2+2ab+b^2+2ab=\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}=\frac{1}{a+a+b}+\frac{1}{b+b+c}+\frac{1}{c+c+a}\)
\(\Rightarrow P\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow P\le\frac{1}{3}\sqrt{\frac{6021}{5}}\)
Dấu "=" xảy ra khi \(a=b=c=3\sqrt{\frac{5}{6021}}\)
Mẫu thức như vầy thì tìm max còn được chứ tìm min sao nổi bạn?
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\ge\frac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\ge\frac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự: \(\sqrt{\frac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\) ; \(\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge ca+2b^2\)
Cộng vế với vế:
\(VT\ge2\left(a^2+b^2+c^2\right)+ab+bc+ca=2+ab+bc+ca\)
a) Giả sử:
\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow\frac{a^2+2ab+b^2}{4}\ge ab\)
\(\Rightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Rightarrow\frac{\left(a-b\right)^2}{4}\ge0\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng )
=> đpcm
b, Bất đẳng thức Cauchy cho các cặp số dương \(\frac{bc}{a}\)và \(\frac{ca}{b};\frac{bc}{a}\)và \(\frac{ab}{c};\frac{ca}{b}\)và \(\frac{ab}{c}\)
Ta lần lượt có : \(\frac{bc}{a}+\frac{ca}{b}\ge\sqrt[2]{\frac{bc}{a}.\frac{ca}{b}}=2c;\frac{bc}{a}+\frac{ab}{c}\ge\sqrt[2]{\frac{bc}{a}.\frac{ab}{c}}=2b;\frac{ca}{b}+\frac{ab}{c}\ge\sqrt[2]{\frac{ca}{b}.\frac{ab}{c}}\)
Cộng từng vế ta đc bất đẳng thức cần chứng minh . Dấu ''='' xảy ra khi \(a=b=c\)
c, Với các số dương \(3a\) và \(5b\), Theo bất đẳng thức Cauchy ta có \(\frac{3a+5b}{2}\ge\sqrt{3a.5b}\)
\(\Leftrightarrow\left(3a+5b\right)^2\ge4.15P\)( Vì \(P=a.b\))
\(\Leftrightarrow12^2\ge60P\)\(\Leftrightarrow P\le\frac{12}{5}\Rightarrow maxP=\frac{12}{5}\)
Dấu ''='' xảy ra khi \(3a=5b=12:2\)
\(\Leftrightarrow a=2;b=\frac{6}{5}\)
Ta thấy: \(\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}=\Sigma_{cyc}\frac{a^2+bc}{\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}}\)
Ta lại có: \(\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}\le\frac{\left(a^2b+b^2c\right)+\left(bc^2+ca^2\right)+\left(c^2a+ab^2\right)}{3}=\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
\(\Leftrightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{\Sigma_{cyc}\left(a^2+bc\right)}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{a^2+b^2+c^2+ab+bc+ca}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}\)
Nhận thấy: \(A=\left(a+b+c\right)\left(a^2+b^2+c^2+ab+bc+ca\right)=a^3+b^3+c^3+3abc+2\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
Theo Schur: \(a^3+b^3+c^3+3abc\ge\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
\(\Leftrightarrow A\ge3\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{3\Sigma_{cyc}\left(ab\left(a+b\right)\right)}{\frac{1}{3}\left(a+b+c\right)\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{9}{a+b+c}\)
\(M=\sum\frac{ab}{\sqrt{\left(2a+3b\right)^2+\left(a-b\right)^2}}\le\sum\frac{ab}{\sqrt{\left(2a+3b\right)^2}}=\sum\frac{ab}{2a+3b}\)
\(\Rightarrow M\le\frac{1}{32}\sum ab\left(\frac{2}{a}+\frac{3}{b}\right)=\frac{1}{25}\sum\left(3a+2b\right)=\frac{1}{5}\left(a+b+c\right)\)
\(M\le\frac{1}{5}\sqrt{3\left(a^2+b^2+c^2\right)}=\frac{1}{5}.3=\frac{3}{5}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)