K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2016

Vì (x - 3) ^2 >= 0 Với mọi x => -(x - 3)2 =< 0 với mọi x

=> -(x - 3)2 + 5/4 =< 5/4

=> GTLN là 5/4, dấu "=" xảy ra khi x = 3

3 tháng 3 2016

Bạn thấy: x^4 >0 ; x^2 >0 ; 5/x^4 >0 và 2x^2 >0 (1)

Vậy B > hoặc bằng 0.

Dấu = xảy ra khi (1) = 0.

=> MaxB = 1

Ủng hộ nha!!

20 tháng 6 2017

Ta có : A = x2 - 4x + 1 

=> A = x2 - 2.x.2 + 4 - 3 

=> A = (x - 2)2 - 3 

Mà : (x - 2)2 \(\ge0\forall x\in R\)

Nên :   (x - 2)2 - 3 \(\ge-3\forall x\in R\)

Vậy GTNN của A là -3 khi x = 2 

20 tháng 6 2017

\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2

Vậy gtnn của B là 10 khi x=-1/2
---

\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi x=0 hoặc x=-5

28 tháng 7 2018

k mk đi mk sẽ k lại

28 tháng 7 2018

x+y=2=>x=2-y

Ta có:\(xy=\left(2-y\right)y=2y-y^2=-y^2+2y-1+1=-\left(y-1\right)^2+1\le1\)

Dấu "=" xảy ra khi y=1 <=> x=1

Vậy GTLN của biểu thức xy là 1 khi x=y=1

1 tháng 11 2016

A=3x2-15x+2

\(=3\left(x^2-5x+\frac{3}{2}\right)\)

\(=3\left(x^2-5x+\frac{25}{4}\right)-\frac{67}{4}\)

\(=3\left(x-\frac{5}{2}\right)^2-\frac{67}{4}\ge-\frac{67}{4}\)

Dấu = khi \(x=\frac{5}{2}\)

Vậy MinA\(=-\frac{67}{4}\Leftrightarrow x=\frac{5}{2}\)

1 tháng 11 2016

\(3x^2-15x+2=3\left(x^2-5x+\frac{25}{4}\right)-\frac{67}{4}=3\left(x-\frac{5}{2}\right)^2-\frac{67}{4}\ge0-\frac{67}{4}=-\frac{67}{4}\)

\(\Rightarrow MIN_{3x^2-15x+2}=-\frac{67}{4}\Leftrightarrow x=\frac{5}{2}\)

 

25 tháng 7 2016

Bài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1\(\ge\)0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967\(\ge\)0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2\(\le\)0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

26 tháng 7 2016

ài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1$\ge$≥0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967$\ge$≥0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2$\le$≤0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

13 tháng 7 2021

cau A thay = bằng cộng ạ

 

23 tháng 8 2020

\(A=5-8x+x^2=-8x+x^2+6-11\)

\(=\left(x-4\right)^2-11\)

Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)

Vậy Amin = - 11 <=> x = 4

23 tháng 8 2020

\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)

\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy Bmax = 9 <=> x = - 1