K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:

$y'=x^2-(m-1)x-m=(x+1)(x-m)$

$y''=2x-(m-1)$

Nếu $x_{ct}=-1$ thì $y''(-1)=-1-m>0\Leftrightarrow m< -1$

$y_{ct}=\frac{1}{2}m+\frac{1}{2}=\frac{1}{3}$

$\Leftrightarrow m=\frac{-1}{3}$ (loại vì $m< -1$)

Nếu $x_{ct}=m$ thì $y''(m)=m+1>0\Leftrightarrow m>-1$

$y_{ct}=\frac{-1}{6}m^3+\frac{1}{2}m^2+\frac{1}{3}=\frac{1}{3}$

$\Leftrightarrow m=0$ (chọn) hoặc $m=-3$ (loại)

Vậy $m=0$

22 tháng 5 2019

25 tháng 6 2019

Đáp án B

25 tháng 11 2017

Đáp án D

Phương pháp:

là điểm cực tiểu của hàm số.

19 tháng 12 2018

a) y′ = 3 x 2  + 2(m + 3)x + m

y′ = 0 ⇔ 3 x 2  + 2(m + 3)x + m = 0

Hàm số đạt cực trị tại x = 1 thì:

y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3

Khi đó,

y′ = 3 x 2  – 3;

y′′ = 6x;

y′′(1) = 6 > 0;

Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.

b) y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = −(m + 1)2 + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − ( m + 1 ) 2  + 4 = 0 ⇔ ( m + 1 ) 2  = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

21 tháng 2 2017

Đáp án A

Phương pháp:

+) Tính y’ và giải phương trình y' = 0

+) Lập bảng xét dấu của y’ và rút ra kết luận.

+) Điểm x = x0 được gọi là điểm cực tiểu của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu từ âm sang dương.

Cách giải:

Bảng xét dấu y’:

 

Hàm số đạt cực tiểu tại x = 0, giá trị cực tiểu yCT = y(0) = 2