Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)
\(A=\dfrac{5\sqrt{a}-3}{\sqrt{a}-2}+\dfrac{3\sqrt{a}+1}{\sqrt{a}+2}-\dfrac{a^2+2\sqrt{a}+8}{a-4}\)
\(=\dfrac{\left(5\sqrt{a}-3\right)\left(\sqrt{a}+2\right)+\left(3\sqrt{a}+1\right)\left(\sqrt{a}-2\right)-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{5a+10\sqrt{a}-3\sqrt{a}-6+3a-6\sqrt{a}+\sqrt{a}-2-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{-a^2+8a-16}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\dfrac{-\left(a-4\right)^2}{a-4}=4-a\)
1: Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=5m+1\\x+y=3m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=3m+2-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=\dfrac{12m+8-5m-1}{4}=\dfrac{7m+7}{4}\end{matrix}\right.\)
Ta có: \(x^2+2y^2=9\)
\(\Leftrightarrow\left(\dfrac{5m+1}{4}\right)^2+2\cdot\left(\dfrac{7m+7}{4}\right)^2=9\)
\(\Leftrightarrow\dfrac{25m^2+10m+1}{16}+\dfrac{2\cdot\left(49m^2+98m+49\right)}{16}=9\)
\(\Leftrightarrow25m^2+10m+1+98m^2+196m+98-144=0\)
\(\Leftrightarrow123m^2+206m-45=0\)
Đến đây bạn tự làm nhé, chỉ cần giải phương trình bậc hai bằng delta thôi
a) Ta có: \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
\(=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(\Delta=9-4m>0\Rightarrow m< \dfrac{9}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m\end{matrix}\right.\)
\(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\)
\(\Leftrightarrow x_1^2+x_2^2+2+2\sqrt{\left(x_1^2+1\right)\left(x_2^2+1\right)}=27\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\sqrt{\left(x_1x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}=25\)
\(\Leftrightarrow9-2m+2\sqrt{m^2+9-2m+1}=25\)
\(\Leftrightarrow\sqrt{m^2-2m+10}=m+8\left(m\ge-8\right)\)
\(\Leftrightarrow m^2-2m+10=m^2+16m+64\)
\(\Rightarrow m=-3\) (thỏa mãn)
Pt trên có a=1, b=5, c=-3m+2
\(\Delta=b^2-4ac=25-4\cdot1\cdot\left(-3m+2\right)=17+12m\)
Để pt có hai nghiệm phân biệt thì \(\Delta>0\)<=> 17+12m >0 <=>m> 17/12
Theo hệ thức Viet, ta có:
\(\hept{\begin{cases}x_1+x_2=-5\\x_1\cdot x_2=-3m+2\end{cases}}\)
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1\cdot x_2=25-4\left(-3m+2\right)=17+12m=10\)
=> 12m = -7 <=>m=-7/12 (thỏa đkxđ)
Vậy với m=-7/12 thì phương trình có hai nghiệm x1, x2 thỏa (x1 - x2)^2 =10
\(PT\Leftrightarrow\dfrac{5}{2}\sqrt{2x+1}-\sqrt{\dfrac{\dfrac{2x+1}{2}}{2}}=\dfrac{3}{2}\\ \Leftrightarrow\dfrac{5}{2}\sqrt{2x+1}-\dfrac{1}{2}\sqrt{2x+1}=\dfrac{3}{2}\\ \Leftrightarrow2\sqrt{2x+1}=\dfrac{3}{2}\\ \Leftrightarrow\sqrt{2x+1}=\dfrac{3}{4}\\ \Leftrightarrow2x+1=\dfrac{9}{16}\\ \Leftrightarrow2x=-\dfrac{7}{16}\\ \Leftrightarrow x=-\dfrac{7}{32}\\ \Leftrightarrow a=-\dfrac{7}{32}\\ \Leftrightarrow1-36a=1+36\cdot\dfrac{7}{32}=...\)
\(\Leftrightarrow0\le\sqrt{3-2x}\le\sqrt{5}\\ \Leftrightarrow0\le3-2x\le5\\ \Leftrightarrow-1\le x\le\dfrac{3}{2}\)
a)ĐKXĐ :\(x\ge0;x\ne9\)
khai triển => \(P=\frac{x-4}{\sqrt{x}+1}\)
b) Ta có :\(x=\sqrt{14-6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
Thay vào P ta có : \(P=\frac{3-\sqrt{5}-4}{\sqrt{3-\sqrt{5}}+1}=-\frac{7+\sqrt{5}}{\sqrt{3-\sqrt{5}}+1}\)
Đặt \(t=\sqrt{x-3}\)\(\left(t\ge0\right)\)
\(\sqrt{8+t}+\sqrt{5-t}=5\)
\(\Leftrightarrow\left(\sqrt{8+t}+\sqrt{5-t}\right)^2=25\)
\(\Leftrightarrow8+t+5-t+2\sqrt{\left(8+t\right)\left(5-t\right)}=25\)
\(\Leftrightarrow2\sqrt{\left(8+t\right)\left(5-t\right)}=12\)
\(\Leftrightarrow\sqrt{\left(8+t\right)\left(5-t\right)}=6\)
\(\Leftrightarrow\left(8+t\right)\left(5-t\right)=36\)
\(\Leftrightarrow t^2+3t-4=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=-4\left(l\right)\end{cases}}\)
thay t=1 = căn (x-3) => x=4
điều kiện x-3 \(\ge0;5-\sqrt{x-3}\ge0\)(1)
đặt \(\sqrt{8+\sqrt{x-3}}=a\left(a\ge\sqrt{8}\right);\sqrt{5-\sqrt{x-3}}=b\left(b\ge0\right)\)
\(\hept{\begin{cases}a+b=5\\a^2+b^2=13\end{cases}< =>\hept{\begin{cases}a=5-b\\\left(5-b\right)^2+b^2=13\end{cases}< =>}}\)\(\hept{\begin{cases}a=5-b\\2b^2-10b+12=0\end{cases}< =>\hept{\begin{cases}a=3\\b=2\end{cases};\hept{\begin{cases}a=2\\b=3\end{cases}}}}\)
chỉ có a=3 là thoảm= mãn a \(\ge\sqrt{8}\)
\(\hept{\begin{cases}a=3\\b=2\end{cases}< =>\hept{\begin{cases}8+\sqrt{x-3}=9\\5-\sqrt{x-3}=4\end{cases}< =>x=4}}\)(thỏa mãn (1))
vậy x=4