Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,ĐKXĐ \(x^3-8\ne0\Leftrightarrow x^3\ne8\Leftrightarrow x\ne2\)
b,\(\Leftrightarrow3x^2+6x+12=0\)
\(\Leftrightarrow3\left(x^2+2x+1\right)+9=0\)
\(\Leftrightarrow3\left(x+1\right)^2+9=0\)(VÔ LÝ VÌ 3(x+1)2>=0 =>3(x+1)2+9>0)
vì vây ko có giá trị x để F =0
C, VỚI ĐKXĐ trên ,ta có
\(F=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\frac{3}{x-2}\)
a) ĐKXĐ: \(\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\\2-x\ne0\end{cases}}\) => \(\hept{\begin{cases}x\ne-2\\x\ne\pm2\\x\ne2\end{cases}}\) => \(x\ne\pm2\)
Ta có:Q = \(\frac{x-1}{x+2}+\frac{4x+4}{x^2-4}+\frac{3}{2-x}\)
Q = \(\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4x+4}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
Q = \(\frac{x^2-2x-x+2+4x+4-3x-6}{\left(x+2\right)\left(x-2\right)}\)
Q = \(\frac{x^2-2x}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x}{x+2}\)
b) ĐKXĐ P: x - 3 \(\ne\)0 => x \(\ne\)3
Ta có: P = 3 => \(\frac{x+2}{x-3}=3\)
=> x + 2 = 3(x - 3)
=> x + 2 = 3x - 9
=> x - 3x = -9 - 2
=> -2x = -11
=> x = 11/2 (tm)
Với x = 11/2 thay vào Q => Q = \(\frac{\frac{11}{2}}{\frac{11}{2}+2}=\frac{11}{15}\)
c) Với x \(\ne\)\(\pm\)2; x \(\ne\)3
Ta có: M = PQ = \(\frac{x+2}{x-3}\cdot\frac{x}{x+2}=\frac{x}{x-3}=\frac{x-3+3}{x-3}=1+\frac{3}{x-3}\)
Để M \(\in\)Z <=> 3 \(⋮\)x - 3
=> x - 3 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng:
x - 3 | 1 | -1 | 3 | -3 |
x | 4 | 2 (ktm) | 6 | 0 |
Vậy ...
\(\frac{3-x+x}{3-x}=\frac{5x\left(x+2\right)+2\left(x+2\right)\left(3-x\right)}{\left(x+2\right)^2\left(3-x\right)}\)
\(\frac{3}{3-x}=\frac{\left(5x+2\left(3-x\right)\right)\left(x+2\right)}{\left(x+2\right)^2\left(3-x\right)}\)
\(\frac{3}{3-x}=\frac{5x+2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}\)
\(\frac{3}{3-x}=\frac{5x}{\left(x+2\right)\left(3-x\right)}+2\)
\(\frac{3}{3-x}-2=\frac{5x}{\left(x+2\right)\left(3-x\right)}\)
\(\frac{3-2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=\frac{5x}{\left(x+2\right)\left(3-x\right)}\)
\(3-2X\left(3-x\right)=5x\)
\(3-6+2x=5x\)
chị có thể tự giải tiếp ạ
e là hs lớp 7
cảm ơn e "dang long vu'' chị làm xong thấy cái j nó sai sai nhưng k biết sai chỗ nào nên muốn dò lại bài thôi cảm ơn e nha
\(A=\frac{-1}{2x+3}\)
Để A có giá trị nguyên thì -1 phải chia hết cho 2x+3
hay 2x+3\(\in\)Ư(-1)={1;-1}
=>x={-1;-2}
Bài 1
Ta có : \(\frac{2x+2}{x^2-1}=0\)ĐK : \(x\ne\pm1\)
\(\Leftrightarrow2x+2=0\Leftrightarrow x=-1\)( ktm )
Bài 2 :
Ta có : \(\frac{2x+3}{-x+5}=\frac{3}{4}\)ĐK : \(x\ne5\)
\(\Leftrightarrow8x+12=-3x+15\Leftrightarrow11x=3\Leftrightarrow x=\frac{3}{11}\)
Vậy phương trình có tập nghiệm là S = { 3/11 }
x+1/x^2+x+1 -(x-1)/x^2+x+1=3/x(x^4+x^2+1)
đkxđ x khác 0
[(x+1)(x^2-x+1)-(x-1)(x^2+x+1)] /(x^2+x+1)(x^2-x+1)=3/x(x^4+x^2+1)
[(x^3+1)-(x^3-1)]/x^4+x^2+1=3/x(x^4+x^2+1)
nhân 2 vế pt cho x(x^4+x^2+1) ta được
x(x^3+1-x^3+1)=3
<=> 2x=3
<=>x=3/2 (thỏa)
S={3/2}
Đặt \(x^2+x+1=a\ne0vàx^2-x+1=b\ne0\)
\(\Rightarrow b-a=-2xvàb+a=2x^2+2\)
và điều kiện \(x\ne0\)
thì \(x\left(x^4+x^2+1\right)=xab\)
\(\Rightarrow PT\Leftrightarrow\frac{x+1}{a}-\frac{x-1}{b}=\frac{3}{xab}\)
\(\Leftrightarrow\frac{bx\left(x+1\right)-ax\left(x-1\right)}{xab}=\frac{3}{xab}\)
\(\Leftrightarrow bx^2+bx-ax^2+ax=3\)
\(\Leftrightarrow x^2\left(b-a\right)+x\left(b+a\right)-3=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\frac{3}{2}\)(tm)
Vậy \(x=\frac{2}{3}\) là nghiệm của pt