Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A có GTLN thì 1/7-x có GTLN
=> 7-x là số nguyên dương nhỏ nhất.
=> 7-x=1
=>x=6
De 1/7-x Lon Nhat =>7-x duong Nho =>7-x=1=>x=7-1=6 vay x=6
a) Ta có : \(|x-7|\ge0\)
\(\Rightarrow A=124-5|x-7|\ge124\left(1\right)\)
Mà \(A=0\)
\(\Leftrightarrow5|x-7|=0\)
\(\Leftrightarrow x=7\left(2\right)\)
Từ (1) và (2) => max A = 124
b)
+) Với \(x\ge\frac{2}{3}\)thì \(x-\frac{2}{3}\ge0\)
\(\Rightarrow|x-\frac{2}{3}|=x-\frac{2}{3}\)
Thay vào ta tính được \(B=\frac{7}{6}\)( bạn tự thay vào tính nha )
Còn lại bạn tự làm nha .
Cuối cùng ra \(_{max}B=\frac{7}{6}\)
a) \(A=\left|x-\frac{2}{3}\right|-4\)
Có: \(\left|x-\frac{2}{3}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)
Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\) ( K có GTLN bạn nhé )
b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)
Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy: \(Max_B=2\) tại \(x=-\frac{5}{6}\)
\(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)
\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)
Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)
Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)
\(M\)max \(\Leftrightarrow7-x\)min
\(TH1:7-x< 0\)
\(\Rightarrow M< 0\)(không đạt \(GTLN\))
\(TH2:7-x=0\) (\(M\) vô lí)
\(\Rightarrow7-x>0\) và \(7-x\) nhỏ nhất
\(\Rightarrow7-x=1\\
\Rightarrow x=6\)
Vậy \(Mmax=1\Leftrightarrow x=6\)
\(\frac{1}{7-x}\) lớn nhất khi 7 - x bé nhất
=> x lớn nhất và lớn hơn bằng 0
=> x = 6
Vậy GTLN của M = 1
Lời giải:
a. Tại $x=\frac{1}{2}=0,5$ thì $A=\frac{2014-0,5}{2015-0,5}=\frac{4027}{4029}$
Tại $x=\frac{-1}{2}=-0,5$ thì $A=\frac{2014+0,5}{2015+0,5}=\frac{4029}{4031}$
b. $A=\frac{2015-x-1}{2015-x}=1-\frac{1}{2015-x}=1+\frac{1}{x-2015}$
Để $A$ max thì $\frac{1}{x-2015}$ max
$\Rightarrow x-2015 là số nguyên dương nhỏ nhất
$\Rightarrow x-2015=1$
$\Rightarrow x=2016$
giải chi tiết cơ
Xét x>7 thì A<0(1)
Xét x<7 thì mẫu 7-x là số nguyên dương . Phân số A có tử và mẫu đều dương, tử ko đổi nên
A lớn nhất <=> mẫu 7-x nhỏ nhất <=> 7-x=1<=>x=6. khi đóA=1(2)
so sánh 1 và 2 , ta thấy GTLN của A =1 khi và chỉ khi x=6