\(\sqrt{x^2-x+1}\)

b,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 9 2023

Lời giải:

a. Để bt có nghĩa thì $x^2-x+1\geq 0$

$\Leftrightarrow (x-\frac{1}{2})^2+\frac{3}{4}\geq 0(*)$ 

$\Leftrightarrow x\in\mathbb{R}$ (do $(*)$ luôn đúng với mọi số thực $x$)

b.

Để bt có nghĩa thì $x^2-5\geq 0$

$\Leftrightarrow (x-\sqrt{5})(x+\sqrt{5})\geq 0$

$\Leftrightarrow x\geq \sqrt{5}$ hoặc $x\leq -\sqrt{5}$

c. 

Để bt có nghĩa thì: $-x^2+2x-1\geq 0$

$\Leftrightarrow -(x^2-2x+1)\geq 0$

$\Leftrightarrow x^2-2x+1\leq 0$

$\Leftrightarrow (x-1)^2\leq 0(*)$

Do $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$

Nên $(*)\Leftrightarrow (x-1)^2=0$

$\Leftrightarrow x=1$

d.

Để bt có nghĩa thì \(\left\{\begin{matrix} x-1\neq 0\\ \frac{-2}{x-1}\geq 0\end{matrix}\right.\Leftrightarrow x-1<0\Leftrightarrow x<1\)

NV
1 tháng 3 2019

a/ \(x^2+4x-5>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}2x-1\ge0\\x-\sqrt{2x-1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\\left\{{}\begin{matrix}x>0\\x^2>2x-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}x^2-3\ge0\\1-\sqrt{x^2-3}\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}\ge0\\-2x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn

e/ \(\left\{{}\begin{matrix}3x-1\ge0\\5x-3\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\ge\dfrac{3}{5}\end{matrix}\right.\) \(\Rightarrow x\ge\dfrac{3}{5}\)

10 tháng 8 2017

a) \(\sqrt{\dfrac{1}{x+2}}\) có nghĩa \(\Leftrightarrow\dfrac{1}{x+2}>0\Leftrightarrow x+2>0\Leftrightarrow x>-2\) vậy \(x>-2\)

b) \(\sqrt{\dfrac{1}{x-1}}\) có nghĩa \(\Leftrightarrow\dfrac{1}{x-1}>0\Leftrightarrow x-1>0\Leftrightarrow x>1\) vậy \(x>1\)

c) \(\sqrt{5-x^2}\) \(\Leftrightarrow5-x^2\ge0\Leftrightarrow x^2\le5\Leftrightarrow-\sqrt{5}\le x\le\sqrt{5}\)

vậy \(-\sqrt{5}< x< \sqrt{5}\)

d) \(\sqrt{x^2}-2\) có nghĩa \(\Leftrightarrow x^2\ge0\) (đúng với mọi x) vậy biểu thức này luôn tồn tại

e) \(\dfrac{1}{\sqrt{2x-x^2}}\) có nghĩa \(\Leftrightarrow2x-x^2>0\Leftrightarrow x\left(2-x\right)>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x>0\\2-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\2-x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0< x< 2\\x\in\varnothing\end{matrix}\right.\)

vậy \(0< x< 2\)

25 tháng 7 2017

a) Để A có nghĩa \(\Leftrightarrow4x^2-1\ge0\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1\ge0\\2x+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1\le0\\2x+1\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le-\dfrac{1}{2}\end{matrix}\right.\)

Vậy A có nghĩa khi \(x\ge\dfrac{1}{2}\) hoặc \(x\le-\dfrac{1}{2}\)

b) Ta có 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 > 0 với mọi x.

Vậy B có nghĩa với mọi x

c) Để C có nghĩa \(\Leftrightarrow2x-x^2>0\Leftrightarrow x\left(2-x\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\2-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\2-x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow0< x< 2\)

Vậy C có nghĩa khi 0 < x < 2

d) Để D có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{3}{x}>0\\-3x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2+3}{x}>0\\-3x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không có giá trị nào của x thỏa mãn điều kiện này.

Vậy không có giá trị của x để D có nghĩa

19 tháng 5 2017

+)\(A=\sqrt{x^2-3}\) ,Để biểu thức có nghĩa

\(=>x^2-3>=0< =>x^2>=3.\)\(< =>-\sqrt{3}< =x< =\sqrt{3}\)

+)\(B=\frac{1}{\sqrt{x^2}+4x-5}\)

xét 2 th 

th1)x>=0

=>\(B=\frac{1}{x+4x-5}=\frac{1}{5x-5}\)

để biểu thức có nghĩa =>\(5x-5\)khác 0<=>x khác 1

th2>x<0

=>\(B=\frac{1}{-x+4x-5}=\frac{1}{3x-5}\)

biểu thức có nghĩa =>3x-5 khác 0<=>x khác \(\frac{5}{3}\)

vậy với x khác 1, \(\frac{5}{3}\) thì B có nghĩa

+) \(C=\frac{1}{\sqrt{x-\sqrt{2x-1}}}\)

để C có nghĩa 

=>\(\sqrt{x-\sqrt{2x-1}}>0< =>x>\sqrt{2x-1}\),\(2x-1>=0< =>x^2>2x-1,x>=\frac{1}{2}\)(1)

=>\(x^2-2x+1>0< =>\left(x-1\right)^2>0=>\orbr{\begin{cases}x>1\\x< 1\end{cases}}\)(2)

từ (1) và (2)=>x>1

vậy với x>1 thì C có nghĩa

+)D=\(\frac{1}{1-\sqrt{x^2}-3}\)

xét 2 th

th1)x>=0

=>\(D=\frac{1}{1-x-3}=\frac{1}{-x-2}\)

để D có nghĩa =>-x-2 khác 0<=>x khác -2

th2)x<0

=>\(D=\frac{1}{1-\left(-x\right)-3}=\frac{1}{x-2}\)

Để D có nghĩa => x-2 khác 0<=> x khác 2

Vậy với x khác 2,-2 thì D có nghĩa

19 tháng 5 2017

mình muốn trả lời nhưng mình ko biết

16 tháng 12 2017

a) \(\dfrac{1}{2-\sqrt{x}}\)có nghĩa\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

vậy......

b) \(\dfrac{3}{\sqrt{x^2}-1}\)có nghĩa\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1\ge0\\x^2-1\ne0\end{matrix}\right.\Leftrightarrow x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow\left|x\right|>1\Leftrightarrow-1< x< 1\)

vậy....

c) \(\sqrt{2x^2+3}\)

\(x^2\ge0\forall x\Rightarrow2x^2\ge0\Rightarrow2x^2+3>0\)

vậy căn thức trên có nghĩa với mọi x

d)\(\dfrac{5}{\sqrt{-x^2-2}}\)có nghĩa

\(\Leftrightarrow-x^2-2>0\Leftrightarrow x^2< -2\)( không xảy ra)

vậy không có giá trị nào của x để căn thức trên có nghĩa

e) \(\sqrt{x^2+3}\)

làm tương tự với phần c

28 tháng 12 2017

a) đkxđ : \(\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

\(\Leftrightarrow0\le x\ne4\)

vậy......

b) đkxđ \(\left\{{}\begin{matrix}x^2-1\ge0\\\sqrt{x^2-1}\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ne1\end{matrix}\right.\)

\(\Leftrightarrow x>1\)

vậy...........

c) đkxđ :\(2x^2+3\ge0\)

\(\left\{{}\begin{matrix}2x^2\ge0\\3>0\end{matrix}\right.\)

nên : \(2x^2+3\ge0\)

vậy biểu thức trên có nghĩa vs mọi x

e) tg tự như c

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

7 tháng 10 2017

trả lời giúp mk đi mà chiều nộp bài rùi huhu