
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\Leftrightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)
Do đó \(x\in\left\{0;1;2\right\}\)
b)
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot...\cdot\frac{31}{64}=2^x\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{4\cdot6\cdot8\cdot...\cdot64}=2^x\Leftrightarrow\frac{31!}{\left(2\cdot2\right)\cdot\left(2\cdot3\right)\cdot\left(2\cdot4\right)\cdot...\cdot\left(2\cdot31\right)\cdot64}=2^x\)
\(\frac{31!}{2^{30}\cdot31!\cdot2^6}=2^x\Leftrightarrow\frac{1}{2^{36}}=2^x\Leftrightarrow2^{-36}=2^x\Rightarrow x=-36\)

a) 15 - 3x = 6
=> 3x = 15 - 6
=> 3x = 9
=> x = 9 : 3 = 3
b) \(\dfrac{2}{3}-\dfrac{4}{3}x=\dfrac{1}{2}\Rightarrow\dfrac{4}{3}x=\dfrac{2}{3}-\dfrac{1}{2}\Rightarrow\dfrac{4}{3}x=\dfrac{1}{6}\Rightarrow x=\dfrac{1}{6}:\dfrac{4}{3}\Rightarrow x=\dfrac{3}{24}=\dfrac{1}{8}\)c) 319.(x - 12 ) = 4 . 320
=> x - 12 = 4 . 3
=> x - 12 = 12
=> x = 12 + 12 = 24
d) 3.(x - 4) = 2^2 . 3^3
=> x - 4 = 2^2 . 3^2
=> x - 4 = 36
=> x = 36 + 4 = 40
a)\(15-3x=6\Rightarrow3x=9\Rightarrow x=3\)
b) \(\dfrac{2}{3}-\dfrac{4}{3}x=\dfrac{1}{2}\Rightarrow\dfrac{4}{3}x=\dfrac{1}{6}\Rightarrow x=\dfrac{1}{8}\)
c) \(3^{19}.\left(x-12\right)=4.3^{20}\Rightarrow x-12=12\Rightarrow x=24\)
d)\(3\left(x-4\right)=2^2.3^3\Rightarrow3x-12=108\Rightarrow3x=120\Rightarrow x=40\)

Bài 1:
a) Ta có: \(\frac{5}{6}-\frac{2}{3}+\frac{1}{4}\)
\(=\frac{10}{12}-\frac{8}{12}+\frac{3}{12}\)
\(=\frac{2+3}{12}=\frac{5}{12}\)
b) Ta có: \(1\frac{11}{12}-\frac{5}{12}\cdot\left(\frac{4}{5}-\frac{1}{10}\right):\frac{-5}{12}\)
\(=\frac{23}{12}-\frac{5}{12}\cdot\left(\frac{8}{10}-\frac{1}{10}\right)\cdot\frac{-12}{5}\)
\(=\frac{23}{12}-\frac{5}{12}\cdot\frac{7}{10}\cdot\frac{-12}{5}\)
\(=\frac{23}{12}-\frac{-7}{10}\)
\(=\frac{115}{60}+\frac{42}{60}=\frac{157}{60}\)
Bài 2:
a) Ta có: \(\frac{1}{2}\cdot x-\frac{2}{5}=\frac{1}{5}\)
\(\Leftrightarrow\frac{1}{2}\cdot x=\frac{1}{5}+\frac{2}{5}=\frac{3}{5}\)
\(\Leftrightarrow x=\frac{3}{5}:\frac{1}{2}=\frac{3}{5}\cdot2=\frac{6}{5}\)
Vậy: \(x=\frac{6}{5}\)
b) Ta có: \(\left(1-2x\right)\cdot\frac{4}{3}=\left(-2\right)^3\)
\(\Leftrightarrow\left(1-2x\right)\cdot\frac{4}{3}=-8\)
\(\Leftrightarrow1-2x=-8:\frac{4}{3}=-8\cdot\frac{3}{4}=-6\)
\(\Leftrightarrow-2x=-6-1=-7\)
hay \(x=\frac{7}{2}\)
Vậy: \(x=\frac{7}{2}\)

\(\left(x+1\right)\left(y-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0-1\\y=0+2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy x = - 1 ; y = 2

a) \(\left(3.x-12\right).3=27\)
\(\Rightarrow3x-12=27:3\)
\(\Rightarrow3x-12=9\)
\(\Rightarrow3x=9+12\)
\(\Rightarrow3x=21\)
\(\Rightarrow x=21:3\)
\(\Rightarrow x=7\)
b) \(7.\left(4.x\right)=14\)
\(\Rightarrow4.x=14:7\)
\(\Rightarrow4.x=2\)
\(\Rightarrow x=2:4\)
\(\Rightarrow x=\frac{1}{2}\)
\(\left(3.x-12\right).3=27\) \(7.\left(4.x\right)=14\)
\(3.x-12=27:3\) \(4.x=14:7\)
\(3.x-12=9\) \(4.x=2\)
\(3.x=9+12\) \(x=2:4\)
\(3.x=21\) \(x=\frac{1}{2}.\)
\(x=21:3\)
\(x=7.\)

b)
\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)
\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(x-2=8\)
=> x = 10
a)
\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)
\(A=\frac{1}{2016}\)

\(15-\left\{2.\left[\left(2x-4\right).5\right].3.\left(x+1\right)\right\}=12-x\)
\(15-\left\{\left[10x-20\right].6.\left(x+1\right)\right\}=12-x\)
\(15-\left\{10x-20.6x+1\right\}=12-x\)
\(15-\left\{10x-120x+1\right\}=12-x\)
\(15-\left(-110x\right)-1=12-x\)
\(15+110x-1=12-x\)
\(110x+x=12-15+1\)
\(111x=-2\)
\(x=\dfrac{-2}{111}\)