K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 8

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+2\right)=-2m+2>0\Rightarrow m< 1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=m^2-2m+2\end{matrix}\right.\)

\(\left|\left(x_1+x_2\right)+x_1x_2\right|=3\)

\(\Leftrightarrow\left|2\left(m-2\right)+m^2-2m+2\right|=3\)

\(\Leftrightarrow\left|m^2-2\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2-2=3\\m^2-2=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2=5\\m^2=-1\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=\sqrt{5}>1\left(loại\right)\\m=-\sqrt{5}\end{matrix}\right.\)

Vậy \(m=-\sqrt{5}\)

NV
22 tháng 1

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)

Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)

\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)

\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)

\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)

\(\Leftrightarrow2m^2+2m-4=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

17 tháng 5 2021

a)PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m+3)^2+4(2m+4)>0`
`<=>4m^2+12m+9+8m+16>0`
`<=>4m^2+20m+25>0`
`<=>(2m+5)^2>0`
`<=>m ne -5/2`
b)Áp dụng vi-ét:
$\begin{cases}x_1+x_2=2m+3\\x_1.x_2=-2m-4\\\end{cases}$
`|x_1|+|x_2|=5`
`<=>x_1^2+x_2^2+2|x_1.x_2|=25`
`<=>(x_1+x_2)^2+2(|x_1.x_2|-x_1.x_2)=25`
`<=>(2m+3)^2+2[|-2m-4|-(-2m-4)]=25`
Với `-2m-4>=0<=>m<=-2`
`=>pt<=>(2m+3)^2-25=0`
`<=>(2m-2)(2m+8)=0`
`<=>(m-1)(m+4)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=-4\end{array} \right.$
`-2m-4<=0=>m>=-2=>|-2m-4|=2m+4`
`<=>4m^2+12m+9+8m+16=25`
`<=>4m^2+20m=0`
`<=>m^2+5m=0`
`<=>` \left[ \begin{array}{l}x=0\\x=-5\end{array} \right.$
Vậy `m in {0,1,-4,-5}`

1 tháng 6 2023

\(x^2-2\left(m-1\right)x+m^2-4=0\)

\(\Delta=b^2-4ac=\left[-2\left(m-1\right)\right]^2-4\left(m^2-4\right)\)

\(=4\left(m^2-2m+1\right)-4\left(m^2-4\right)\)

\(=4m^2-8m+4-4m^2+16\)

\(=-8m+20\)

Để pt đã cho có 2 nghiệm pb \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow-8m+20>0\Leftrightarrow-8m>-20\Leftrightarrow m< \dfrac{5}{2}\)

Theo Vi-ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m^2-4\end{matrix}\right.\)

Ta có : \(x_1\left(x_1-3\right)+x_2\left(x_2-3\right)=6\)

\(\Leftrightarrow x_1^2-3x_1+x^2_2-3x_2=6\)

\(\Leftrightarrow\left(x_1^2+x_2^2\right)-3\left(x_1+x_1\right)-6=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)-6=0\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-4\right)-3\left(2m-2\right)-6=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+8-6m+6-6=0\)

\(\Leftrightarrow2m^2-14m+12=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=6\left(ktm\right)\\m=1\left(tm\right)\end{matrix}\right.\)

Vậy m = 1 thì thỏa mãn đề bài.

 

3 tháng 5 2022

Để  phương trình 1 có 2 nghiệm phân biệt

=> \(\Delta,>0\)  <=> \(\left[-\left(m-1\right)\right]^2-\left(-2m+5\right)>0\)

<=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

=> Theo hệ thức Vi ét ta có 

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\circledast\\x_1.x_2=-2m+5\circledast\circledast\end{matrix}\right.\)   

Theo bài ra ta có 

\(x_1-x_2=-2\circledcirc\)

Từ \(\circledast vaf\circledcirc\) ta có hệ pt 

\(\left\{{}\begin{matrix}x1+x2=2m-2\\x1-x2=-2\end{matrix}\right.\)  <=>\(\left\{{}\begin{matrix}x1=m-2\\x2=m\end{matrix}\right.\)

Thay x1 và x2 vào \(\circledast\circledast\)ta dc

\(\left(m-2\right)m=-2m+5\)

<=> m=\(\left[{}\begin{matrix}-\sqrt{5}\\\sqrt{5}\end{matrix}\right.\left(tm\right)\)

Vậy ...

 

NV
22 tháng 1 2022

\(\Delta'=1-\left(m-3\right)=4-m>0\Rightarrow m< 4\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-3\end{matrix}\right.\)

Do \(x_1+x_2=2\Rightarrow x_2=2-x_1\)

Ta có:

\(x_1^2+x_1x_2=2x_2-12\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)=2\left(2-x_1\right)-12\)

\(\Leftrightarrow2x_1=4-2x_1-12\)

\(\Leftrightarrow4x_1=-8\Rightarrow x_1=-2\Rightarrow x_2=4\)

Thế vào \(x_1x_2=m-3\Rightarrow m-3=-8\)

\(\Rightarrow m=-5\)

6 tháng 1 2023

Ptr có: `a+b+c=1-2m+2+2m-3=0`

   `=>[(x=1),(x=c/a=2m-3):}`

`@TH1: x_1=1;x_2=2m-3`

  `=>\sqrt{1}=2\sqrt{2m-3}`

`<=>\sqrt{2m-3}=1/2`

`<=>2m-3=1/4`

`<=>m=13/8`

`@TH2:x_1=2m-3;x_2=1`

  `=>\sqrt{2m-3}=2\sqrt{1}`

`<=>2m-3=4`

`<=>m=7/2`

30 tháng 4 2020

Phương trình có hai nghiệm fan biệt <=> \(\Delta>0\)

<=> \(\left(m-1\right)^2+4m>0\Leftrightarrow\left(m+1\right)^2>0\)

<=> \(m\ne-1\)

Áp dụng viet ta có: \(x_1x_2=-m;x_1+x_2=m-1\)

Khi đó; 

\(x_1\left(3-x_2\right)+20\ge3\left(3-x_2\right)\)

<=> \(3\left(x_1+x_2\right)-x_1x_2+11\ge0\)

=>\(3\left(m-1\right)+m+11\ge0\)

<=> \(m\ge-2\) 

30 tháng 4 2020

Ta có: \(\Delta=\left(m-1\right)^2+4m=\left(m+1\right)^2\)

Phương trình có 2 nghiệm phân biệt x1;x2 khi \(\Delta\)>0 <=> m\(\ne\)-1

Ta có: \(\hept{\begin{cases}x_1+x_2=m+1\\x_1\cdot x_2=-m\end{cases}}\)

Theo bài ra ta có:

\(x_1\left(3-x_2\right)+20\ge3\left(3-x_2\right)-x_1x_2\ge-11\)

\(\Leftrightarrow3\left(m-1\right)+m\ge-11\)

<=> \(4m\ge-8\Leftrightarrow m\ge-2\)

Vậy \(m\ge-2;m>-1\)thì phương trình có 2 nghiệm phân biệt thỏa mãn yêu cầu đề bài