K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2018

Hệ đối xứng loại 2

Trừ 2 phương trình cho nhau

=> (x+1)^2-(y+1)^2=y-x

<=> (x-y)(x+y+2)+(x-y)=0

<=> (x-y) (x+y+3)=0

<=> x-y =0 hoặc x+y+3=0

Thế vào một trong 2 phương trình 

Có 2 trường hợp em phải xét nếu x-y =0 thế vào có 1 nghiệm duy nhất thì phương trình x+y+3 =0 vô nghiệm 

Ngược lại 

29 tháng 11 2018

mấy ông chũa ngủ à

19 tháng 1 2019

Bài 1 : dùng ĐK chặn x;y

Bài 2: pt trùng phương đặt x8 = y rồi dùng Vi-ét cho pt 1 rồi Vi-ét cho pt 2

Bài 3: rút x;y theo m rồi quy P về pt chỉ có ẩn m -> tổng bình phương cộng vs 1 hằng số

Bài 4: Đi ngủ .VV

19 tháng 1 2019

Cách chặn x ; y của a khó quá :( nghĩ mãi ko ra , đành làm cách khác

\(1,ĐKXĐ:x\ge-y\)

Từ hệ \(\Rightarrow\hept{\begin{cases}\sqrt{x^2+x+2}=y+\sqrt{x+y}\\x+1=y+\sqrt{x+y}\end{cases}}\)

        \(\Rightarrow\sqrt{x^2+x+2}=x+1\)

        \(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x^2+x+2=x^2+2x+1\end{cases}}\)

       \(\Leftrightarrow x=1\)

Thế vào hệ có \(\sqrt{y+1}=2-y\)

          \(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y+1=y^2-4y+4\end{cases}}\)

         \(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y^2-5y+3=0\end{cases}}\)

         \(\Leftrightarrow y=\frac{5-\sqrt{13}}{2}\)

Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=\frac{5-\sqrt{13}}{2}\end{cases}}\)

18 tháng 7 2019

Sai  bất đẳng thức giữa của  (1) rồi\(x+1>0\Leftrightarrow x>-1.\)

Suy ra phải sửa luôn mấy phần bên dưới. Và kết luận : \(-1< x\le3\)