Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2n^2+9n+7}{2n+1}=\frac{\left(2n^2+9n+4\right)+3}{2n+1}=\frac{\left(2n^2+n+8n+4\right)+3}{2n+1}\)
\(=\frac{n\left(2n+1\right)+4\left(2n+1\right)+3}{2n+1}=\frac{\left(n+4\right)\left(2n+1\right)+3}{2n+1}=n+4+\frac{3}{2n+1}\)
Để phân thức trên là 1 số nguyên <=> \(3⋮2n+1\Rightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-2;-1;0;1\right\}\)
\(2n^2-7n+4⋮2n+1\)
\(2n^2+n-8n-4+8⋮2n+1\)
\(n\left(2n+1\right)-4\left(2n+1\right)+8⋮2n+1\)
\(\left(2n+1\right)\left(n-4\right)+8⋮2n+1\)
Vì \(\left(2n+1\right)\left(n-4\right)⋮2n+1\)
\(\Rightarrow8⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Mà n thuộc Z và 2n + 1 là số lẻ nên \(2n+1\in\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{0;-1\right\}\)
Vậy..........
c) Cách 1:
x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
Tìm n thuộc Z để các phân thức sau có giá trị nguyên:
1) \(\frac{n-5}{2n+1}\)
2) \(\frac{n^2+4}{n-1}\)
1) Để phân thức đạt trị nguyên
=> n - 5 chia hết cho 2n + 1
<=> 2n - 10 chia hết cho 2n + 1
<=> 2n + 1 - 11 chia hết cho 2n + 1
<=> 11 chia hết cho 2n + 1
=> 2n + 1 thuộc Ư(11) = {1 ; -1 ; 11 ; -11}
Ta có bảng sau :
2n + 1 | 1 | -1 | 11 | -11 |
n | 0 | -1 | 5 | -6 |
2) Như câu 1 , ta có :
n2 + 4 chia hết cho n - 1
n2 - n + n + 4 chia hết cho n - 1
<=> n(n - 1) + n + 4 chia hết cho n - 1
<=> n - 1 + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5) = {1 ; -1; 5 ; -5}
Còn lại giống 1 , lập bảng xét giá trị n nha !
Để ; \(\frac{n+3}{n+1}\in Z\)
Thì n + 3 chia hết cho n + 1
=> (n + 1) + 2 chia hết cho n + 1
=> 2 chia hết cho n + 1
=> n + 1 thuộc Ư(2) = {-2;-1;1;2}
Ta có bảng :
n + 1 | -2 | -1 | 1 | 2 |
n | -3 | -2 | 0 | 1 |
Em nhấn vào link màu xanh: Câu hỏi của Nguyễn Khánh Linh - Toán lớp 8 - Học toán với OnlineMath