Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/(x^2-13x+40)+2/(x^2-8x+15)+1/(x^2-5x+6)+6/5+0
3/(x-8)(x-5)+2/(x-5)(x-3)+1/(x-3)(x-2)+6/5=0
1/(x-8)-1/(x-5)+1/(x-5)-1/(x-3)+1/(x-3)-1/(x-2)+6/5=0
1/(x-8)-1/(x-2)+6/5=0
ban tu giai tiep nhan
m^2x+2x=5-3mx
m^2x+3mx+2x=5
x(m^2+3m+2)=5
khi 0x=5 thi pt vo nghiem
m^2+3m+2=0
(m+1)(m+2)=0
m=-1 hoac m=-2
\(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)
\(\Rightarrow VT>VP\) ; \(\forall x\)
\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm
b.
\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)
\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)
Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)
Để nghiệm pt dương
\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)
\(PT\Leftrightarrow x\left(m^2-9\right)-\left(m-3\right)=0\)
PT vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}m^2-9=0\\m-3\ne0\end{matrix}\right.\Leftrightarrow m=-3\)
\(\Leftrightarrow\left(m^2-9\right)x=m-3\)
Pt đã cho vô nghiệm khi:
\(\left\{{}\begin{matrix}m^2-9=0\\m-3\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m=\pm3\\m\ne3\end{matrix}\right.\)
\(\Rightarrow m=-3\)
m lũy thừa 2x hả bạn? cái dạng này tớ biết sơ sơ nà, cơ mà bạn ghi đề khó hiểu quá
ta có m2x + 2x = 5 + 3m
<=> m2x + 2x - 3m = 5
<=> (m2 + 2 -3m)x = 5
<=> (m2 - m + 2m + 2)x = 5
<=> (m-1)(m+2)x = 5
* Nếu m khác 1 và m khác -2 thì x = \(\frac{5}{\left(m-1\right)\left(m+2\right)}\)
* Nếu m = 1 thì 0x = 5 => Phương trình vô nghiệm
* Nếu m = -2 thì 0x = 5 => phương trình vô nghiệm
Vậy m = {-2;1} thì phương trình vô nghiệm
Cho phương trình 3mx^3 + mx = 15x^2 + 5. Tìm m để phương trình có nghiệm duy nhất nhận giá trí dương
=>3mx^3-15x^2=5-mx
=>3x^2(mx-5)=-(mx-5)
=>(3x^2+1)(mx-5)=0
=>mx-5=0
Để phương trình có nghiệm duy nhất nhận giá trị dương thì m>0
a: =>2,5x-0,5-4,5+2m(x-2)
=>2,5x+2mx-4m-5=0
=>x(2m+2,5)=4m+5
=>x(4m+5)=8m+10
TH1: m=-5/4
=>Phương trình có vô số nghiệm
=>Nhận
TH2: m<>-5/4
Phương trình có nghiệm duy nhất là x=(8m+10)/(4m+5)=2(loại)
b: =>\(\dfrac{3mx+12m+5}{9m^2-1}=\dfrac{\left(2x-3\right)\left(3m-1\right)+\left(3x-4m\right)\left(3m+1\right)}{\left(3m-1\right)\left(3m+1\right)}\)
=>6xm-2x-9m+3+9xm+3x-12m^2-4m=3mx+12m+5
=>-12m^2+15xm+x-13m+3-3mx-12m-5=0
=>-12m^2+x(15m+1-3m)-25m-2=0
=>x(12m+1)=12m^2+25m+2
=>x(12m+1)=(m+2)(12m+1)
Th1: m=-1/12
=>PT luôn có nghiệm
=>Nhận
TH2: m<>-1/12
Để phương trình có nghiệm âm thì m+2<0
=>m<-2
a)Thay m=-1 vào phương trình ta đc:
\(4.\left(-1\right)^2.x-4x-3.\left(-1\right)=3\)
\(\Leftrightarrow4x-4x+3=3\)
\(\Leftrightarrow0x=0\)(Luôn đúng)
\(\Leftrightarrow\)Pt có vô số nghiệm
Vậy pt có vô số nghiệm.
b)Thay x=2 vào phương trình ta có:
\(4m^2.2-4.2-3m=3\)
\(\Leftrightarrow8m^2-8-3m=3\)
\(\Leftrightarrow8m^2-3m-11=0\)
\(\Leftrightarrow8m^2+8m-11m-11=0\)
\(\Leftrightarrow8m\left(m+1\right)-11\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(8m-11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\8m-11=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=-1\\m=\frac{11}{8}\end{cases}}\)
Vậy tập nghiệm của pt là S={-1;\(\frac{11}{8}\)}
c)Ta có:
\(5x-\left(3x-2\right)=6\)
\(\Leftrightarrow5x-3x+2=6\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
Có x=2 là nghiệm của pt \(5x-\left(3x-2\right)=6\)
Để \(4m^2x-4x-3m=3\Leftrightarrow5x-\left(3x-2\right)=6\)
\(\Leftrightarrow\)x=2 là nghiệm của \(4m^2x-4x-3m=3\)
Thay x=2 vào pt trên ta đc:
\(4m^2.2-4.2-3m=3\)(Giống câu b)
Vậy m=-1,m=11/8...
d)Có:\(4m^2x-4x-3m=3\)
\(\Leftrightarrow4x\left(m^2-1\right)=3+3m\)
Để pt vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}m^2-1=0\\3+3m\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne-1\end{cases}}\)
\(\Leftrightarrow m=1\)
Vậy m=1 thì pt vô nghiệm.
Bài làm
m2x - 4x = 5 - 3mx
<=> m2x - 4x + 3mx = 5
<=> x( m2 - 4 + 3m ) = 5
Để phương trình m2x - 4x = 5 - 3mx vô nghiệm thì:
m2 - 4 + 3m = 0
<=> m2 - 3 - 1 + 3m = 0
<=> ( m2 - 1 ) - 3( 1 - m ) = 0
<=> ( m - 1 )( m + 1 ) - 3( 1 - m ) = 0
<=> ( 1 - m )( -m - 1 ) - 3( 1 - m ) = 0
<=> ( 1 - m )( -m - 1 - 3 ) = 0
<=> ( 1 - m )( -m - 4 ) = 0
<=> \(\orbr{\begin{cases}1-m=0\\-m-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\-m=4\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=-4\end{cases}}}}\)
Vậy để thương trình trên vô nghiệm thì m = 1 hoặc m = -4
# Học tốt #