\(\left(x-3\right)\left[x^2+\left(k-1\right)x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3

17 tháng 10 2018

bài 1 :

a) ta có : \(\left(x-3\right)\left[x^2+\left(x-1\right)x+k^2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\2x^2-x+k=0\end{matrix}\right.\) để phương trình có 3 nghiệm phân biệt

\(\Leftrightarrow2x^2-x+k\) có 2 nghiệm và 2 nghiệm này phải khác 3

\(\Leftrightarrow\left\{{}\begin{matrix}2.3^2-3+k\ne0\\1^2-4.2.k>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k\ne-15\\k< \dfrac{1}{8}\end{matrix}\right.\)

vậy ...

b) tương tự

2) sữa đề

ta có : \(x^2+3\left(m-3x^2\right)^2=m\)

\(\Leftrightarrow x^2+3\left(m^2-6mx^2+9x^4\right)=m\)

\(\Leftrightarrow27x^4-\left(18m-1\right)x^2-3m^2-m=0\)

phương trình có nghiệm khi phương trình \(27t^2-\left(18m-1\right)t-3m^2-m=0\) có ít nhất 1 nghiệm dương

->...

26 tháng 10 2017

\(\frac{k\left(x+2\right)-3\left(k-1\right)}{x+1}=1\)

\(\Leftrightarrow\left(k-1\right)x=2-k\)

Với \(k=1\) thì phương trình vô nghiệm

Với \(k\ne1\)thì

\(x=\frac{2-k}{k-1}>0\)

\(\Leftrightarrow1< k< 2\)

21 tháng 3 2020

a) \(\left(x^2-2\right)\left(k-1\right)x+2k-5=0\)

\(\Delta=\left(k-1\right)^2-2k+5\)

\(=k^2-4x+6=\left(k-2\right)^2+2>0\)

=> PT luôn có nghiệm với mọi k

18 tháng 2 2019

Với $k=0$ ta có:$x=-2$.Suy ra $k=0$ thỏa.

Với $k \ne 0$:

$\Delta =(1-2k)^2-4k(k-2)=4k+1$

Để phương trình đã cho có nghiệm hữu tỉ thì $\Delta$ phải là một số chính phương.

Do $4k+1$ là số lẻ nên ta giả sử:

$4k+1=(2m+1)^2=4m^2+4m+1\Rightarrow k=m(m+1)$

Do $k \in Z$ và kết hợp 2 trường hợp trên ta suy ra:

$k$ là tích của hai số nguyên liên tiếp.

25 tháng 3 2018

\(x^2-2\left(m-1\right)x-3-m=0\)  \(\left(1\right)\)

từ \(\left(1\right)\)  ta có \(\Delta'=\left[-\left(m-1\right)\right]^2-\left(-3-m\right)\)

\(\Delta'=m^2-2m+1+m+3\)

\(\Delta'=m^2-m+4\)

25 tháng 3 2018

Câu b, nx cơ bn ơi !

17 tháng 9 2016

Phương trình trên 

<=> kx2 + (2 - 4k)x + (3k - 2) = 0

Ta có ∆' = (1 - 2k)2 - (3k - 2)k 

= 1 - 4k + 4k2 - 3k2 + 2k 

= k2 - 2k + 1 = (k - 1)\(\ge0\)

Vậy pt có nghiệm với mọi k

17 tháng 9 2016

\(k\left(x-1\right)\left(x-3\right)+2\left(x-1\right)=0\)

\(\left(x-1\right)\left[k\left(x-3\right)+2\right]=0\Rightarrow\orbr{\begin{cases}x=1\\k\left(x-3\right)+2=0\end{cases}}\)vậy pt luôn có nghiệm x = 1  với mọi k.

Nhiều thế, chắc phải đưa ra đáp thôi