\(^{2012}+2x^{2013}+3x^{2014}\)

Với x =

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 11 2018

\(x=\dfrac{\sqrt{\sqrt{5}-2}\left(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\right)}{\sqrt{\left(\sqrt{5}-2\right)\left(\sqrt{5}+1\right)}}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(x=\dfrac{1+\sqrt{5}-2}{\sqrt{3-\sqrt{5}}}-\left(\sqrt{2}-1\right)=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{6-2\sqrt{5}}}-\left(\sqrt{2}-1\right)\)

\(x=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{\left(\sqrt{5}-1\right)^2}}-\sqrt{2}+1=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}-\sqrt{2}+1=1\)

\(\Rightarrow x^{2012}+2x^{2013}+3x^{2014}=1^{2012}+2.1^{2013}+3.1^{2014}=6\)

4 tháng 2 2018

Đặt a = \(\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}+\sqrt{2}-\sqrt{\frac{5+\sqrt{5}}{2}}}\)

\(a^2=4+2\sqrt{4-\frac{5+\sqrt{5}}{2}}=4+\sqrt{6-2\sqrt{5}}\)

\(=4+\sqrt{\left(\sqrt{5}-1\right)^2}=3+\sqrt{5}\Rightarrow a=\sqrt{3}+\sqrt{5}\)

\(\Rightarrow\)\(x=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-1\)

\(=\sqrt{\frac{6+2\sqrt{5}}{2}}-\sqrt{\frac{6-2\sqrt{5}}{2}}-1=\frac{\sqrt{5}+1}{\sqrt{2}}-\frac{\sqrt{5}-1}{\sqrt{2}}-1\)

\(=\sqrt{2}-1\Rightarrow x=\sqrt{2}-1\Rightarrow x=x^2+2x-1=0\)

\(B=2x^3+3x^2-4x+2\)

\(B=2x\left(x^2+2x-1\right)-\left(x^2+2x-1\right)+1=1\)

4 tháng 2 2018

Tham khao:

2,Biết x+y=5x+y=5 và x+y+x2y+xy2=24x+y+x2y+xy2=24 Giá trị của biểu thức x3+y3x3+y3 là

3,Nếu đa thức x2+px2+qx2+px2+q chia hết cho đa thức x2−2x−3x2−2x−3 thì khi đó giá trị của

2) x+y+x2y+xy2=24⇔x+y+xy(x+y)=24⇔5+5xy=24⇔xy=24−55=3,8x+y+x2y+xy2=24⇔x+y+xy(x+y)=24⇔5+5xy=24⇔xy=24−55=3,8

(x+y)=5⇔x2+2xy+y2=25⇔x2+y2=25−2xy=17,4(x+y)=5⇔x2+2xy+y2=25⇔x2+y2=25−2xy=17,4

x3+y3=(x+y)(x2−xy+y2)=5(17,4−3,8)=68

3) x4−2x−3=(x+1)⋅(x−3)x4−2x−3=(x+1)⋅(x−3)

Để đa thức x4+px2+q⋮x2−2x−3x4+px2+q⋮x2−2x−3 => Có hai nghiệm của x là x = -1 hoặc x = 3.

+) Xét x = -1 : x4+px2+q=0⇒(−1)4+p⋅(−1)2+q=0x4+px2+q=0⇒(−1)4+p⋅(−1)2+q=0

⇒1+p+q=0→q=−1−p⇒1+p+q=0→q=−1−p (1)

+) Xét x = 3 : x4+px2+q=0⇒34+p⋅32+q=0x4+px2+q=0⇒34+p⋅32+q=0

⇒81+p⋅9+q=0⇒81+p⋅9+q=0 (2)

Thế (1) vào (2) ta có : 81+9⋅p−1−p=081+9⋅p−1−p=0

⇔80+8p=0⇔80+8p=0

⇔p=−10⇔p=−10

Vậy giá trị của p là -10.

2 tháng 1 2019

1) Để biểu thức \(\sqrt{-2x+3}\) xác định thì \(-2x+3\ge0\Leftrightarrow-2x\ge-3\Leftrightarrow x\le\dfrac{3}{2}\)

2) Để biểu thức \(\sqrt{\dfrac{2}{x^2}}\) xác định thì \(\left\{{}\begin{matrix}x^2\ge0\\x^2\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(x\ne0\)

3) Để biểu thức \(\sqrt{\dfrac{4}{x+3}}\) xác định thì \(\left\{{}\begin{matrix}x+3\ge0\\x+3\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge-3\\x\ne-3\end{matrix}\right.\)\(\Leftrightarrow x>-3\)

4) Ta có -5<0

x2+6>0

Suy ra \(\dfrac{-5}{x^2+6}< 0\)

Vậy với mọi x thì \(\sqrt{\dfrac{-5}{x^2+6}}\) sẽ không xác định

5) Để biểu thức \(\sqrt{3x+4}\) xác định thì \(3x+4\ge0\Leftrightarrow3x\ge-4\Leftrightarrow x\ge\dfrac{-4}{3}\)

6) Ta có \(x^2\ge0\Leftrightarrow x^2+1\ge1>0\)

Vậy với mọi x thì biểu thức \(\sqrt{1+x^2}\) sẽ luôn xác định

7) Để biểu thức \(\sqrt{\dfrac{3}{1-2x}}\) xác định thì \(\left\{{}\begin{matrix}1-2x\ge0\\1-2x\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2x\le1\\2x\ne1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x\ne\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow x< \dfrac{1}{2}\)

8) Để biểu thức \(\sqrt{\dfrac{-3}{3x+5}}\) xác định thì \(\left\{{}\begin{matrix}3x+5\le0\\3x+5\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3x\le-5\\3x\ne-5\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\le\dfrac{-5}{3}\\x\ne\dfrac{-5}{3}\end{matrix}\right.\)\(\Leftrightarrow x< \dfrac{-5}{3}\)

2 tháng 1 2019

Cảm ơn bạn nhìu nha!

Bài 3: 

a: \(A=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{x-25}\)

\(=\dfrac{x-10\sqrt{x}+25}{x-25}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)

b: \(B=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}=\dfrac{3}{\sqrt{x}+3}\)

14 tháng 8 2019

1) \(B=\sqrt{x-1+2\sqrt[3]{x\sqrt{x}+3x+3\sqrt{x}+1}}\)

\(B=\sqrt{x-1+2\sqrt[3]{\sqrt{x^3}+3x+3\sqrt{x}+1}}\)

\(B=\sqrt{x-1+2\sqrt[3]{\left(\sqrt{x}+1\right)^3}}\)

\(B=\sqrt{x-1+2\left(\sqrt{x}+1\right)}\)

\(B=\sqrt{x-1+2\sqrt{x}+2}\)

\(B=\sqrt{\left(\sqrt{x}+1\right)^2}\)

\(B=\sqrt{x}+1\)

\(B=\sqrt{5}+1\)

2) Sửa đề :

\(C=\sqrt{2x-1+2\sqrt{x^2-x}}+\sqrt{2x-1-2\sqrt{x^2-x}}\)

\(C=\sqrt{x+2\sqrt{x\left(x-1\right)}+x-1}+\sqrt{x-2\sqrt{x\left(x-1\right)}+x-1}\)

\(C=\sqrt{\left(\sqrt{x}+\sqrt{x-1}\right)^2}+\sqrt{\left(\sqrt{x}-\sqrt{x-1}\right)^2}\)

\(C=\sqrt{x}+\sqrt{x-1}+\sqrt{x}-\sqrt{x-1}\)

\(C=2\sqrt{x}\)

\(C=2\cdot\sqrt{4}=4\)

14 tháng 8 2019

đợi tí lát solve full cho

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình