K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 11 2018

\(x=\dfrac{\sqrt{\sqrt{5}-2}\left(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\right)}{\sqrt{\left(\sqrt{5}-2\right)\left(\sqrt{5}+1\right)}}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(x=\dfrac{1+\sqrt{5}-2}{\sqrt{3-\sqrt{5}}}-\left(\sqrt{2}-1\right)=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{6-2\sqrt{5}}}-\left(\sqrt{2}-1\right)\)

\(x=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{\left(\sqrt{5}-1\right)^2}}-\sqrt{2}+1=\dfrac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}-\sqrt{2}+1=1\)

\(\Rightarrow x^{2012}+2x^{2013}+3x^{2014}=1^{2012}+2.1^{2013}+3.1^{2014}=6\)

a) Ta có: \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)

\(=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

a: ĐKXĐ: \(x\ge\dfrac{1}{3}\)

b: ĐKXĐ: \(x< \dfrac{15}{2}\)

c: ĐKXĐ: \(x\le0\)

18 tháng 12 2020

a/ ĐKXĐ : \(-2x+3\ge0\)

\(\Leftrightarrow x\le\dfrac{3}{2}\)

b/ ĐKXĐ : \(3x+4\ge0\)

\(\Leftrightarrow x\ge-\dfrac{4}{3}\)

c/ Căn thức \(\sqrt{1+x^2}\) luôn được xác định với mọi x

d/ ĐKXĐ : \(-\dfrac{3}{3x+5}\ge0\)

\(\Leftrightarrow3x+5< 0\)

\(\Leftrightarrow x< -\dfrac{5}{3}\)

e/ ĐKXĐ : \(\dfrac{2}{x}\ge0\Leftrightarrow x>0\)

P.s : không chắc lắm á!

 

11 tháng 10 2023

1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)

\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)

\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)

\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)

\(=-8\sqrt{3}\)

2) \(A=\sqrt{12-4x}\) có nghĩa khi:

\(12-4x\ge0\)

\(\Leftrightarrow4x\le12\)

\(\Leftrightarrow x\le\dfrac{12}{4}\)

\(\Leftrightarrow x\le3\)

3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)

\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)

14 tháng 5 2023

`a)A=[2\sqrt{3}+2-2\sqrt{3}+2]/[(2\sqrt{3}-2)(2\sqrt{3}+2)]`

   `A=4/[12-4]=1/2`

Với `x > 0,x ne 1` có:

`B=[x-2\sqrt{x}+1]/[\sqrt{x}(\sqrt{x}-1)]`

`B=[(\sqrt{x}-1)^2]/[\sqrt{x}(\sqrt{x}-1)]=[\sqrt{x}-1]/\sqrt{x}`

`b)B=2/5A`

`=>[\sqrt{x}-1]/\sqrt{x}=2/5 . 1/2`

`<=>5\sqrt{x}-5=\sqrt{x}`

`<=>\sqrt{x}=5/4`

`<=>x=25/16` (t/m)

12 tháng 10 2021

\(A=\) \(\dfrac{x+2}{x-5}\)

\(=\dfrac{\left(x-5\right)+7}{x-5}\)

\(=1+\dfrac{7}{x-5}\)

để \(\dfrac{7}{x-5}\) ∈Z thì 7⋮x-5

⇒x-5∈\(\left(^+_-1,^+_-7\right)\)

Còn lại thì bạn tự tính nha