\(P=\dfrac{1}{x^2+2x+6}\) đạt GTLN

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

\(P=\frac{1}{x^2+2x+6}\)

\(P=\frac{1}{\left(x+1\right)^2+5}\ge\frac{1}{5}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy Pmin = 1/5 khi và chỉ khi x = -1

20 tháng 11 2018

ta có : \(x^2+2x+6=x^2+2x+1+5.\)

\(\Rightarrow\left(x+1\right)^2+5\)

ta có : \(\left(x+1\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)^2+5\ge5\)

\(\Rightarrow\frac{1}{x^2+2x+6}\ge\frac{1}{5}\)

Vậy GTLN(P) = 1/5 khi x = -1 

NV
20 tháng 11 2018

\(P=\dfrac{1}{x^2+2x+1+5}=\dfrac{1}{\left(x+1\right)^2+5}\)

Để P lớn nhất thì \(\left(x+1\right)^2+5\) nhỏ nhất, mà \(\left(x+1\right)^2+5\ge5\) \(\forall x\)

\(\Rightarrow P_{max}=\dfrac{1}{5}\) khi \(\left(x+1\right)^2=0\Rightarrow x=-1\)

22 tháng 2 2017

k biet lam

26 tháng 3 2020

\(\text{Ta có:}x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge0+5=5\)

\(P=\frac{1}{x^2+2x+6}\ge\frac{1}{5}\Rightarrow\text{GTLN của }P\text{ là:}\frac{1}{5}\text{ khi: }x=\frac{1}{5}\)

a) Ta có \(x^2+2x+6=\left(x+1\right)^2+5\ge5\)

\(\Rightarrow P\le\frac{1}{5}\)

Dấu "=" xảy ra khi x=-1

\(Q=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)

Đặt \(a=\frac{1}{x+1}\)

\(\Rightarrow Q=1-a+a^2=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=\frac{1}{2}\Rightarrow x=1\)

11 tháng 6 2015

\(x^2+2.x.1+1+5=\left(x+1\right)^2+5\ge5\) ( VÌ \(\left(x+1\right)^2\ge0\))

=> \(\frac{1}{x^2+2x+6}\ge\frac{1}{5}\)

Vậy MaxP = 1/5 khi x = -1

câu b tương tự

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

12 tháng 12 2017

điều kiện của x để gtrị của biểu thức đc xác định

=>\(2x+10\ne0;x\ne0:2x\left(x+5\right)\ne0\)

\(2x+5\ne0;x\ne0\)

=>\(x\ne-5;x\ne0\)

vậy đkxđ là \(x\ne-5;x\ne0\)

rút gon giống với bạn nguyen thuy hoa đến \(\dfrac{x-1}{2}\)

b,để bt =1=>\(\dfrac{x-1}{2}=1\)

=>x-1=2

=>x=3 thỏa mãn đkxđ

c,d giống như trên

18 tháng 12 2018

Câu 2 hình như sai đề bạn ey.

18 tháng 12 2018

Câu 1: 

Đầu tiên,ta chứng minh BĐT phụ (mang tên Cô si): \(x+y\ge2\sqrt{xy}\)

Thật vậy,điều cần c/m  \(\Leftrightarrow x+y-2\sqrt{xy}\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) (luôn đúng)

Vậy BĐT phụ (Cô si) là đúng.

----------------------------------------------------------

Áp dụng BĐT Cô si,ta có: \(2\sqrt{x}=2\sqrt{1x}\le x+1\)

Do đó: 

\(B=\frac{2\sqrt{x}}{x+1}\le\frac{x+1}{x+1}=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

24 tháng 6 2017

Phân thức đại số

Phân thức đại số