\(P=\dfrac{11a-47}{2a-9}\) lớn nhất

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2018

\(P=\dfrac{11a-47}{2a-9}=\dfrac{5\left(2a-9\right)+a-2}{2a-9}=5+\dfrac{a-2}{2a-9}ln'\) khi \(\dfrac{a-2}{2a-9}ln'\) hay \(2a-9nn'\ne0\)

=> 2a - 9 = 1 => a = 5

NM
7 tháng 3 2021

ta có 

\(2P=\frac{22a-94}{2a-9}=\frac{11\left(2a-9\right)+5}{2a-9}=11+\frac{5}{2a-9}\)

vậy P lớn nhất khi \(\frac{5}{2a-9}\) lớn nhất hay \(2a-9\) là dương và bé nhất

khi đó \(2a-9=1\Leftrightarrow a=5\)

10 tháng 5 2017

a) A có giá trị nhỏ nhất khi \(\sqrt{x+2}=0\)

Vậy giá trị nhỏ nhất của A là \(\dfrac{3}{11}\).

b) Ta có: -3\(\sqrt{x-5}\) \(\le0\)

=> B có giá trị lớn nhất khi -3\(\sqrt{x-5}\) = 0

Vậy giá trị lớn nhất của B là \(\dfrac{5}{17}\).

31 tháng 5 2018

1/ Ta có: \(P=\frac{2}{6-m}\)\(\le2\left(\forall m\in Z\right)\)

Dấu "=" xảy ra \(\Leftrightarrow6-m=1\Rightarrow m=5\).

Vậy Max P =2 khi m = 5.

2/ Ta có: \(Q=\frac{8-n}{n-3}\ge0\left(\forall n\in Z\right)\)

Dấu "=" xảy ra \(\Leftrightarrow8-n=0\Rightarrow n=8.\)

Vậy Min Q = 0 khi n = 8.

Chúc bn hc tốt!^_^.

Nhớ kb và cho tớ nhé mọi người!

1 tháng 6 2018

1/ta có :2/6-m max

suy ra:6-m>0,6-m min 

suy ra:6-m=1

suy ra: m=5

Vậy ...

\(A=\frac{2020}{9-x}\left(x\ne9\right)\)

Để A đạt GTLN thì 9-x bé nhất 

=> 9-x=1 

=> x=8

Vậy \(A_{max}=\frac{2020}{9-8}=2020\)tại x=8

Hok Tốt !!!!!!!!!!!!!!

15 tháng 9 2020

\(A=\frac{2020}{9-x}\) 

A đạt giá trị lớn nhất 

\(\Leftrightarrow\frac{2020}{9-x}\)   lớn nhất 

\(9-x\) nhỏ nhất  ( vì 2020 là hằng số ) 

Vì 9 - x khác 0 

\(\Rightarrow9-x=1\)  

\(x=9-1\) 

\(x=8\) 

\(A=\frac{2020}{9-x}=\frac{2020}{9-8}=2020\) 

Vật Giá trị lớn nhất cả A là 2020 khi và chỉ khi x = 8 

8 tháng 7 2018

1,\(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge0+9=9\)

Nên GTNN của \(A\) là \(9\) đạt được khi \(x-0,4=0\Rightarrow x=0,4\)

2,\(\left|x+3\right|\ge0\Rightarrow-\left|x+3\right|\le0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}-0=\frac{1}{8}\)

Nên GTLN của \(B\) là \(\frac{1}{8}\) đạt được khi \(x+3=0\Rightarrow x=-3\)

8 tháng 7 2018

1.

\(A=\left|x-0,4\right|+9\)

Vì \(\left|x-0,4\right|\ge0\Rightarrow\left|x-0,4\right|+9\ge9\)

Vậy GTNN của A là 9 khi x = 0,4

2.

\(B=\frac{1}{8}-\left|x+3\right|\)

Vì \(\left|x+3\right|\ge0\Rightarrow\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}\)

Vậy GTLN của B là \(\frac{1}{8}\)khi x = -3

28 tháng 6 2017

Sorry mink ko biet lm bài lớp 7 mink mới học có lớp 5 thôi à . Mong là sẽ có người lm đc giúp bn .

28 tháng 6 2017

Cho mình hỏi: 1), 2) thuộc bài mấy trong toán lớp 78 vậy bạn.

22 tháng 8 2020

a. Ta có : \(A=\frac{8x^2-9}{x^2+3}=\frac{8x^2+24-33}{x^2+3}=8-\frac{33}{x^2+3}\)

Để Amin thì \(\frac{33}{x^2+3}_{max}\) mà \(\frac{33}{x^2+3}\le11\)

Dấu "=" xảy ra \(\Leftrightarrow x^2+3=3\Leftrightarrow x=0\)

Vậy Amin = 8 - 11 = - 3 <=> x = 0

b. Ta có : \(B=\frac{3x^2-6x+40}{x^2-2x+5}=\frac{3\left(x^2-2x+5\right)+25}{x^2-2x+5}=3+\frac{25}{x^2-2x+5}\)

Để Bmax thì \(\frac{25}{x^2-2x+5}=\frac{25}{\left(x-1\right)^2+4}_{max}\)

mà \(\frac{25}{\left(x-1\right)^2+4}\le\frac{25}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2+4=4\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Bmax \(=3+\frac{25}{4}=\frac{37}{4}\)  <=> x = 1

12 tháng 9 2019

để x lớn nhất =>2a +1 bé nhất nhưng phải >0

và a là số nguyên

=>th1:2a+1=0=> x=6 :0 => ko có x hợp lệ (loại)

th2 : 2a +1=1 =>2a=0 => a=0        và  x=6:1=1 (chọn)

 vậy x đạt giá trị lớn nhất là 6 khi a =0