Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt
\(\hept{\begin{cases}a+\sqrt{15}=x\\\frac{1}{a}-\sqrt{15}=y\end{cases}\Leftrightarrow\hept{\begin{cases}a=x-\sqrt{15}\\\frac{1}{x-\sqrt{15}}-\sqrt{15}=y\left(2\right)\end{cases}}}\)
\(\left(2\right)\Leftrightarrow1-\sqrt{15}x+15=xy-\sqrt{15}y\)
\(\Leftrightarrow16-xy=\sqrt{15}\left(x-y\right)\)
Ta nhận thấy vế trái là số nguyên còn vế phải là số vô tỷ nên để 2 vế bằng nhau thì (x - y) = 0, hay x = y
\(\Leftrightarrow a+\sqrt{15}=\frac{1}{a}-\sqrt{15}\)
\(\Leftrightarrow a^2+2\sqrt{15}a-1=0\)
\(\Leftrightarrow\left(a+\sqrt{15}\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}a=4-\sqrt{15}\\a=-4-\sqrt{15}\end{cases}}\)
a) ĐKXĐ: a\(\ge\)0, a\(\ne\)1
A=(\(\dfrac{\sqrt{a}+2}{\left(\sqrt{a}+1\right)^2}-\dfrac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)).\(\dfrac{\sqrt{a}+1}{\sqrt{a}}\)
A=\(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\).\(\dfrac{\sqrt{a}+1}{\sqrt{a}}\)
A=\(\dfrac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a-1\right)}.\dfrac{\sqrt{a}+1}{\sqrt{a}}\)=\(\dfrac{2}{a-1}\)
b) Để A\(\in\)Z\(\Rightarrow\)x-1\(\in\) Ư(2)=\(\left\{-1,1,-2,2\right\}\)
x-1 | -2 | -1 | 1 | 2 |
x | -1 | 0 | 2 | 3 |
vì x\(\ge\)0,x\(\ne\)1 nên x\(\in\)\(\left\{-1,0,2,3\right\}\)
Q= \(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)+\(\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)= \(\frac{2\sqrt{x}-9-\left(x-9\right)+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) Q <1 <=> \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}< 1< =>1+\frac{4}{\sqrt{x}-3}\)<1 <=> \(\frac{4}{\sqrt{x}-3}< 0\) <=> \(\sqrt{x}-3< 0< =>\sqrt{x}< 3\)<=> \(0\le\)x< 9
c) Q = 1 \(+\frac{4}{\sqrt{x}-3}\) là số nguyên khi 4 chia hết cho\(\sqrt{x}-3\) <=> \(\sqrt{x}-3=1;\sqrt{x}-3=-1;\sqrt{x}-3=2\);\(\sqrt{x}-3=-2;\sqrt{x}-3=4;\sqrt{x}-3=-4\)
<=> x= 16; x = 4; x = 25; x = 1 ; x = 49
Bài làm của bạn Mạnh có hai lỗi:
+) ĐKXĐ: \(\hept{\begin{cases}x-5\sqrt{x}+6\ne0;\sqrt{x}-2\ne0;3-\sqrt{x}\ne0\\x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4;9\end{cases}}\)
+) Vì ko có điều kiện nên câu c chưa loại nghiệm. x = 4 loại nhé