Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: \(=\dfrac{1}{3}\left(-\dfrac{4}{5}-\dfrac{6}{5}\right)=-\dfrac{1}{3}\cdot2=-\dfrac{2}{3}\)
1:
\(A=7-\dfrac{3}{4}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\)
\(=-4-\dfrac{1}{4}=-\dfrac{17}{4}\)
Bài 1:
\(A=\left(7-\dfrac{3}{4}+\dfrac{1}{3}\right)-\left(6+\dfrac{5}{4}-\dfrac{4}{3}\right)-\left(5-\dfrac{7}{4}+\dfrac{5}{3}\right)\)
\(A=7-\dfrac{3}{4}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\)
\(A=\left(7-6-5\right)-\left(\dfrac{3}{4}+\dfrac{5}{4}-\dfrac{7}{4}\right)+\left(\dfrac{1}{3}+\dfrac{4}{3}-\dfrac{5}{3}\right)\)
\(A=-4-\dfrac{3+5-7}{4}+\dfrac{1+4-5}{3}\)
\(A=-4-\dfrac{1}{4}+\dfrac{0}{3}\)
\(A=-\dfrac{16}{4}-\dfrac{1}{4}+0\)
\(A=\dfrac{-16-1}{4}\)
\(A=-\dfrac{17}{4}\)
Bài 2:
\(\dfrac{1}{3}\cdot-\dfrac{4}{5}+\dfrac{1}{3}\cdot-\dfrac{6}{5}\)
\(=\dfrac{1}{3}\cdot\left(-\dfrac{4}{5}-\dfrac{6}{5}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{-4-6}{5}\)
\(=\dfrac{1}{3}\cdot\dfrac{-10}{5}\)
\(=\dfrac{1}{3}\cdot-2\)
\(=-\dfrac{2}{3}\)
a, Với x = 3 và y = -2 ta có:
\(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-\left|3\right|\right)+\left(-2\right)\)
\(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-3\right)-2\)
\(A=\dfrac{3}{2}+\dfrac{4}{9}.3-2\)
\(A=\dfrac{3}{2}+\dfrac{4}{3}-2\)
\(A=\dfrac{5}{6}\)
Với x = 3 và y = -3 ta có:
\(B=\left|2.3-1\right|+\left|3.\left(-3\right)+2\right|\)
\(B=\left|5\right|+\left|-7\right|\)
\(B=5+7=12\)
Hoctot ! ko hiểu chỗ nào cứ hỏi cj nhé
bạn đăg tách ra cho m.n cùng giúp nhé
Bài 2 :
a, \(A=\left|2x-4\right|+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=\left|x+2\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -2
Vậy GTNN B là -3 khi x = -2
Bài 3 :
Vì \(\left(x-2\right)^2\ge0\forall x\)
Nên : \(A=\left(x-2\right)^2-4\ge-4\forall x\)
Vậy \(A_{min}=-4\) khi x = 2
B1: lấy máy tính mà tính thôi bạn (nhớ lm theo từng bước)
B2:
a, \(\left|x-\frac{2}{3}\right|-\frac{1}{2}=\frac{5}{6}\)
\(\left|x-\frac{2}{3}\right|=\frac{4}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{4}{3}\\x-\frac{2}{3}=\frac{-4}{3}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)
b, \(\frac{\left(-2\right)^x}{512}=-32\Rightarrow\left(-2\right)^x=-16384\Rightarrow x\in\varnothing\)
B3:
Vì \(\left(x-2\right)^2\ge0\Rightarrow A=\left(x-2\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x = 2
Vậy GTNN của A = -4 khi x = 2
a: Khi x=-2 thì \(A=3\cdot\left(-2\right)^2+5\cdot\left(-2\right)-1=12-10-1=1\)
b: \(B=6xyz^4=6\cdot3\cdot2\cdot1^4=36\)
a) \(A=2x^2-\dfrac{1}{3}y\)
A= \(\left(2-\dfrac{1}{3}\right)\)\(x^2y\)
A=\(\dfrac{5}{3}\)\(x^2y\)
Tại \(x=2;y=9\) ta có
A=\(\dfrac{5}{3}\).(2)\(^2\).9 = \(\dfrac{5}{3}\).4 .9 = 60
Vậy tại \(x=2;y=9\) biểu thức A= 60
b) P=\(2x^2+3xy+y^2\) (\(y^2\) là 1\(y^2\) nha bạn)
P=\(\left(2+3+1\right)\left(x^2.x\right)\left(y.y^2\right)\)
P= 6\(x^3y^3\)
Tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) ta có
P= 6.\(\left(-\dfrac{1}{2}\right)^3.\left(\dfrac{2}{3}\right)^3\) = 6.\(\left(-\dfrac{1}{8}\right).\dfrac{8}{27}\) = \(-\dfrac{2}{9}\)
Vậy tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) biểu thức P= \(-\dfrac{2}{9}\)
c)\(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)
=\(\left((-\dfrac{1}{2}).\dfrac{2}{3}\right)\left(x.x^3\right).y^2\)
=\(-\dfrac{1}{3}\)\(x^4y^2\)
Tại \(x=2;y=\dfrac{1}{4}\)ta có
\(-\dfrac{1}{3}\).\(\left(2\right)^4.\left(\dfrac{1}{4}\right)^2=-\dfrac{1}{3}.16.\dfrac{1}{16}=-\dfrac{1}{3}\)
\(\)Vậy \(x=2;y=\dfrac{1}{4}\) biểu thức \(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)= \(-\dfrac{1}{3}\)
CHÚC BẠN HỌC TỐT NHA
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
#)Giải :
a)\(\left[1+\frac{2}{3}-\frac{1}{4}\right]\left[\frac{4}{5}-\frac{3}{4}\right]2\)
\(=\left[\frac{5}{3}-\frac{1}{4}\right].\frac{1}{20}.2\)
\(=\frac{17}{12}.\frac{1}{20}.2\)
\(=\frac{17}{120}\)
b) \(2:\left[\frac{1}{2}-\frac{2}{3}\right]3\)
\(=2:\frac{1}{2}.3\)
\(=12\)