K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

x2+y2-xy= (x+y)2-2xy-xy

=(x+y)2-3xy

=(39)2-3(-164)

=2013

2 tháng 1

Em ghi đề cho chính xác lại

12 tháng 3 2023

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

21 tháng 5 2018

nhầm xíu nhá mk lm lại :

\(A=\frac{xz}{z\left(xy+x+1\right)}+\frac{xyz}{xz\left(yz+y+1\right)}+\frac{z}{xz+z+1}\)\(=\frac{xz}{xyz+xz+z}+\frac{1}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

21 tháng 5 2018

\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}=\frac{xz}{z\left(xy+x+1\right)}+\frac{xyz}{xz\left(yz+y+1\right)}+\frac{z}{xz+z+1}\)

\(=\frac{xy}{xyz+xz+z}+\frac{1}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}=\frac{xy}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xy+1+z}{xz+z+1}=1\)

vậy A=1

11 tháng 6 2021

a) C được xác định <=> x khác +- 2

b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)

Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)

c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1

Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương

11 tháng 6 2021

mình cảm ơn ạ

5 tháng 7 2016

\(A=x^2-4xy+5y^2-6y+20=x^2-2.2xy+4y^2+y^2-2.3y+9-9+20=\left(x-2y\right)^2+\left(x-3\right)^2+11\ge11\)

\(\Rightarrow A_{min}=\frac{7}{4}\Leftrightarrow\hept{\begin{cases}x-2y=0\\y-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=2y\\y=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2.3=6\\y=3\end{cases}}}\)

2 bài sau tương tự nếu ko biết nhna81 tin mình mình làm cho

T I C K cho mình nha mình cảm ơn

NV
30 tháng 7 2021

a. Đề sai, với \(x=0\Rightarrow A=4>0\)

b. Đề sai, với \(x=0\Rightarrow B=12>0\)

Đề sai rồi bạn

17 tháng 6 2015

Bài 1:Biến đổi biểu thức sau thành tích các đa thức

16x^2(4x - y) - 8y^2(x + y)+xy (16x+8y)=64x3-16x2y-8xy2-8y3+16x2y+8xy2

=64x3-8y3=(4x)3-(2y)3=(4x-2y)(16x2+8xy+4y)

Bài 2: Tìm x biết

a) (x - 2)^3 -(x - 3)(x^2 + 3x + 9) + 6(x + 1)^2 = 15

<=>x3-6x2+12x-8-(x3-27)+6(x2+2x+1)=15

<=>x3-6x2+12x-8-x3+27+6x2+12x+6=15

<=>24x-25=15

<=>24x=-10

<=>x=-5/12

b) 6(x + 1)^2 - 2(x + 1) ^3 + 2(x - 1)(x^2 +x +1) = 1

<=>6(x2+2x+1)-2(x3+3x2+3x+1)+2(x3-1)=1

<=>6x2+12x+6-2x3-6x2-6x-2+2x3-2=1

<=>6x+2=1

<=>6x=-1

<=>x=-1/6

Bài 3: Tính giá trị biểu thức

D= (2x - 3)^2 - (4x - 6)(2x - 5) + (2x - 5)^2 với x = 99

D= (2x - 3)^2 - (4x - 6)(2x - 5) + (2x - 5)^2

=(2x - 3)^2 - 2(2x - 3)(2x - 5) + (2x - 5)^2

=[(2x-3)-(2x-5)]2

=(2x-3-2x+5)2

=22=4

=>D ko phụ thuộc vào giá trị của x nên 

với x=99 D = 4

8 tháng 12 2021

ĐK: \(3x\ne\pm y;x\ne0\)

A = \(\dfrac{3x}{3x+y}-\dfrac{x}{3x-y}+\dfrac{2x}{\left(3x-y\right)\left(3x+y\right)}\)

\(\dfrac{3x\left(3x-y\right)-x\left(3x+y\right)+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{6x^2-4xy+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{2x\left(3x-2y+1\right)}{\left(3x-y\right)\left(3x+y\right)}\)

Thay x = 1; y=2, ta có:

A = \(\dfrac{2.1\left(3.1-2.2+1\right)}{\left(3.1-2\right)\left(3.1+2\right)}=0\)