Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với giá trị nào của x thì biểu thức A= /x-2016/ + 2015 có giá trị nhỏ nhất ? tìm giá trị nhỏ nhất đó
Vì /x-2106/ >= 0
=> /x-2016/+2015 >= 2015
=> Min = 2015 <=> x = 2016
a) Nhận xét :
/ x + 8 / > 0 với mọi x
/ y - 3 / > 0 với mọi y
=> / x + 8 / + / y - 3 / > 0
=> / x + 8 / + / y - 3 / + 2018 > 2018
=> M > 2018
=> Giá trị nhỏ nhất của M = 2018
Dấu " = " xảy ra khi :
/ x + 8 / = 0
và / y - 3 / = 0
=> x + 8 = 0
và y - 3 = .0
=> x = - 8
Và y = 3
Vậy giá trị nhỏ nhất của M là 2018 khi x = - 8 và y = 3
b) Nhận xét :
/ x + 2 / > 0 với mọi x
/ y - 1 / > 0 với mọi y
=> / x + 2 / + / y - 1 / > 0
=> - / x + 2 / - / y - 1 / < 0
=> - / x + 2 / - / y - 1 / + 1999 < 1999
=> N < 1999
=> Giá trị lớn nhất của N = 1999
Dấu " = " xảy ra khi :
/ x + 2 / = 0
và / y - 1 / = 0
=> x + 2 = 0
và y - 1 = 0
=> x = - 2
và y = 1
Vậy giá trị lớn nhất của N là 1999 khi x = - 2 và y = 1
Ta có :
/ x -100/ >= 0 ; /y + 300/ >= 0
=> /x - 100/ + /y+300/ >=0
=> /x -100/+/y+300/ - 2016 >= -2016
Dấu " = " xẩy ra
<=> \(\hept{\begin{cases}x-100=0\\y+300=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=100\\y=-300\end{cases}}}\)
Vậy GTNN của P là -2016 <=> x = 100 và y = -300
/x-100/\(\ge0,\forall x\)
/y+300/ \(\ge0,\forall y\)
\(|x-100|+|y+300|\ge0,\forall xy\)
\(|x-100|+|y+300|-2016\ge-2016,\forall xy\)
\(P\ge-2016,\forall xy\)
GTNN P là -2016 khi và chỉ khi x= 100, y =-300
a) \(A=\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)
Thay x=4 (tm) vào A ta có: \(A=\frac{6\cdot4-1}{3\cdot4+2}=\frac{23}{14}\)
Thay x=-1(tm) vào A ta có: \(A=\frac{-1\cdot6-1}{3\cdot\left(-1\right)+2}=\frac{-6-1}{-3+2}=\frac{-7}{-1}=7\)
Thay x=0 (tm) ta có: \(A=\frac{6\cdot0-1}{3\cdot0+2}=\frac{-1}{2}\)
Vậy A=\(\frac{23}{14}\)khi x=4; \(A=7\)khi x=-1; A=\(\frac{-1}{2}\)khi x=0
b) A=\(\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)
Để A là số nguyên thì 6x-1 chia hết cho 3x+2
\(\Leftrightarrow A=\frac{2\left(3x+2\right)-5}{3x+2}=2-\frac{5}{3x+2}\)
Để A nguyên thì \(\frac{5}{3x+2}\)nguyên => 5 chia hết cho 3x+2
Vì x thuộc Z => 3x+2 thuộc Z => 3x+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
3x+2 | -5 | -1 | 1 | 5 |
3x | -7 | -3 | -1 | 3 |
x | \(\frac{-7}{3}\) | -1 | \(\frac{-1}{3}\) | 1 |
Vậy x={-1;1} thì A nguyên
Ta thấy: \(\left|x+1\right|\ge0\)
\(\Rightarrow\left|x+1\right|-5\ge-5\)
\(\Rightarrow A\ge-5\)
Dấu "=" khi \(x=-1\)
Vậy \(Min_A=-5\) khi \(x=-1\)