Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : |x-2013| ≥ 0 với mọi x
=> |x-2013|+2≥ 2
=>\(\frac{2016}{\left|x-2013\right|+2}\)≤ \(\frac{2016}{2}\)
=> Max A =1008
<=> x-2013=0
<=> x=2013
Để \(\frac{1}{x^2+2010}\) đạt gtln <=> \(x^2+2010\) đạt gtnn
Vì x2 ≥ 0 với mọi x thuộc R
=> x2 + 2010 ≥ 2010 có gtnn là 2010
Dấu "=" xảy ra khi x2 = 0 => x = 0
Vậy \(\frac{1}{x^2+2010}\) có giá trị lớn nhất là \(\frac{1}{2010}\) tại x = 0
GTLN\(\frac{1}{x^2+2010}\)\(\ge\frac{1}{2010}\)khi \(x=0\)
Min A = -1 <-> x=2/3
Min B =2 <-> x=0 ; y=1
Max C = 5 <-> x=1/2
Max D = 1/3 <-> x=2
Biến đổi đề bài thành: Ax^2 = x^2 -2x +2011 <=> (A-1)x^2 +2x -2011=0 (*)
+ Với A=1 thì pt (*) luôn có nghiệm x=2011/2
+ Với A khác 1 thì pt(*) là pt bậc 2, nên để pt(*) có nghiệm thì đenta' phải >=0
<=> 1^2 - (A-1).(-2011)>=0 <=> 1 + 2011.(A-1) >=0 <=> 2011A -2010 >=0
<=> A>= 2010/2011
Vậy Min của A= 2010/2011 khi x= 2011
\(B=\frac{x^2+2010}{x^2+5}=\frac{x^2+5+2005}{x^2+5}=1+\frac{2005}{x^2+5}\)
\(B_{max}\Rightarrow\left(\frac{2005}{x^2+5}\right)_{max}\Rightarrow\left(x^2+5\right)_{min}\)vì 2005 lớn hơn 0 và không đổi
\(x^2+5\ge5\). dấu = xảy ra khi x2=0 => x=0
Vậy \(B_{max}=402\Leftrightarrow x=0\)
\(B=\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Để \(1+\frac{12}{x^2+3}\) đạt gtln <=> \(\frac{12}{x^2+3}\) đạt gtln
<=> \(x^2+3\) đạt gtnn
\(x^2\ge0\Rightarrow x^2+3\ge3\)
Dấu "=" xảy ra <=> x2 = 0 => x = 0
Vậy gtln của B là \(1+\frac{12}{3}=1+4=5\) tại x = 0
H=/3-x/+/4+x/>=/3-x+x+4/=7. Min=7 khi (3-x)(4+x)>=0 hay -4<=x<=3
Vì |x-2| \(\ge\) 0 với mọi x
=>\(\frac{1}{2}-\left|x-2\right|\le\frac{1}{2}\) với mọi x
=>MaxA=1/2
Dấu "=" xảy ra <=> \(\left|x-2\right|=0< =>x=2\)
Vậy..............
Để \(\frac{1}{x^2+2010}\)đạt GTLN thì \(x^2+2010\)đạt GTNN mà \(x^2\)\(\ge\)0
\(\Leftrightarrow\)\(x^2+2010\ge\)2010
\(\Rightarrow\)\(\frac{1}{x^2+2010}\le\frac{1}{2010}\)khi x = 0
Vậy \(\frac{1}{x^2+2010}\)đạt GTLN bằng \(\frac{1}{2010}\)khi x = 0
cam on ban nha