Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}=\frac{\sqrt{x}-1+4}{\sqrt{x}-1}=1+\frac{4}{\sqrt{x}-1}\)
Để P đạt giá trị nguyên thì \(\frac{4}{\sqrt{x}-1}\) đạt giá trị nguyên
<=>4 chia hết cho \(\sqrt{x}-1\)
<=>\(\sqrt{x}-1\inƯ\left(4\right)\)
<=>\(\sqrt{x}-1\in\left\{-4;-2;-1;1;2;4\right\}\)
<=>\(\sqrt{x}\in\left\{-3;-1;0;2;3;5\right\}\)
<=>\(x\in\left\{0;4;9;25\right\}\)
Cách giải lớp 6 á, thông cảm :)
rút gọn A= ( \(\left(\sqrt{26}+5\sqrt{2}\right)\sqrt{19-5\sqrt{13}}\)
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)
=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2
Đề sai à --
Ta có
\(1D=\frac{\sqrt{x}-2}{\sqrt{x}-3}=1+\frac{1}{\sqrt{x}-3}\)
Để cho D nguyên thì \(\sqrt{x}-3\)phải là ước của 1
\(\Rightarrow\sqrt{x}-3=\left(-1;1\right)\)
=> x = (4; 16)
=> D = (0; 2)
1/ Để N nhận giá trị nguyên thì trước hết \(\sqrt{x}-2\)phải là ước của 3
\(\sqrt{x}-2=\left(-3;-1;1;3\right)\)
Thế vào ta tìm được x = (1; 9; 25)
=> N = (- 3; 3;1)
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
a) Đk \(x>0\)và \(x\ne4\)
=\(\left(\frac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right)\).\(\frac{\sqrt{x}-2}{\sqrt{x}}\)
=\(\frac{2\sqrt{x}}{x-4}\).\(\frac{\sqrt{x}-2}{\sqrt{x}}\)
=\(\frac{2}{\sqrt{x}+2}\)
b) Để \(\frac{2}{\sqrt{x}+2}>\frac{1}{2}\)
\(\Leftrightarrow\frac{4-\sqrt{x}-2}{2\left(\sqrt{x}+2\right)}\)\(>0\)
\(\Leftrightarrow\frac{-\sqrt{x}+2}{2\left(\sqrt{x}+2\right)}\)\(>0\)
Vì \(2\left(\sqrt{x}+2\right)>0\)
mà\(\frac{-\sqrt{x}+2}{2\left(\sqrt{x}+2\right)}\)\(>0\)
nên \(-\sqrt{x}+2>0\)\(\Leftrightarrow x< 4\)
Vậy vs \(0< x< 4\)thì \(A>\frac{1}{2}\)
Đặt \(P=\frac{3}{\sqrt{x}+1}=m\left(m\in Z\right)\Rightarrow m>0\)(1)
\(\Rightarrow3=m\sqrt{x}+m\)
\(\Rightarrow\sqrt{x}=\frac{3-m}{m}=\frac{3}{m}-1\ge0\)
\(\Rightarrow m\le3\)(2)
Từ (1) và (2) => \(m\in\left\{1,2,3\right\}\)
Thay m vào P là tìm được x