Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{7}{1.2}+\frac{7}{2.3}+\frac{7}{3.4}+...+\frac{7}{2015.2016}\right):\frac{2015}{2016}\)
=\(7\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right):\frac{2015}{2016}\)
=\(7\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\frac{2015}{2016}\)
=\(7\left(\frac{1}{1}-\frac{1}{2016}\right):\frac{2015}{2016}=7.\frac{2015}{2016}:\frac{2015}{2016}=7\)
\(\left(\frac{7}{1\cdot2}+\frac{7}{2\cdot3}+\frac{7}{3\cdot4}+...+\frac{7}{2015\cdot2016}\right):\frac{2015}{2016}\)
\(=\left(7-\frac{7}{2}+\frac{7}{2}-\frac{7}{3}+\frac{7}{3}-\frac{7}{4}+...+\frac{7}{2015}-\frac{7}{2016}\right):\frac{2015}{2016}\)
\(=\left(7-\frac{7}{2016}\right):\frac{2015}{2016}=\frac{2015}{288}:\frac{2015}{2016}=\frac{2015}{288}\cdot\frac{2016}{2015}=\frac{2016}{288}=7\)
\(\frac{x}{1.2}+\frac{x}{2.3}+\frac{x}{3.4}+...+\frac{x}{2006.2007}=\frac{2006}{2007}\)
\(\frac{x}{1}-\frac{x}{2}+\frac{x}{2}-\frac{x}{3}+\frac{x}{3}-\frac{x}{4}+...+\frac{x}{2006}-\frac{x}{2007}=\frac{2006}{2007}\)
\(x-\frac{x}{2007}=\frac{2006}{2007}\)
\(\frac{2007x}{2007}-\frac{x}{2007}=\frac{2006}{2007}\)
\(2007x-x=2006\)
\(2006x=2006\)
\(x=1\)
a, \(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\Rightarrow\frac{1}{2^x}+\frac{1}{2^x}\cdot\frac{1}{16}=17\)
\(\Rightarrow\frac{1}{2^x}\left(1+\frac{1}{16}\right)=17\)
\(\Rightarrow\frac{1}{2^x}\cdot\frac{17}{16}=17\)
\(\Rightarrow\frac{1}{2^x}=17:\frac{17}{16}=\frac{1}{16}=\frac{1}{2^4}\)
=> x = 4
b, Ta có: \(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;....;\left|x+\frac{1}{99.100}\right|\ge0\)
\(\Rightarrow\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\)
\(\Rightarrow100x\ge0\Rightarrow x\ge0\)
\(\Rightarrow x+\frac{1}{1.2}+x+\frac{1}{2.3}+...+x+\frac{1}{99.100}=100x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\)
\(\Rightarrow99x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=100x\)
\(\Rightarrow100x-99x=1-\frac{1}{100}\)
\(\Rightarrow x=\frac{99}{100}\)
do vế trái lớn hơn hoặc bằng 0
=> 100.x lớn hơn hoặc bằng 0
=> x lớn hơn hoặc bằng 0
=> vế trái
=\(x+\frac{1}{1.2}+x+\frac{1}{2.3}+...+x+\frac{1}{99.100}\)
=>101x+\(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\)
=>x=\(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
bạn tự tính vế phải nha
a) \(2^x+2^{x+1}2^{x+2}=112\)
\(2^x.\left(1+2+4\right)=112\)
\(2^x=112:7=16\)
Mà \(2^4=16\)
\(\Rightarrow2^x=2^4\)
Vậy x = 4
b) \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...\left|x+\frac{1}{99.100}\right|=100x\)
Vì \(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;....\left|x+\frac{1}{99.100}\right|\ge0\)
\(\Rightarrow\left(x+x+...x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\)
\(\Rightarrow100x+\left(1-\frac{1}{100}\right)=100x\)
\(\Rightarrow\frac{99}{100}=x\)
\(\frac{x}{2}+\frac{x}{2.3}+\frac{x}{3.4}+.....+\frac{x}{2015.2016}=\frac{2015}{4032}\)
\(x.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\right)=\frac{2015}{4032}\)
\(x.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)=\frac{2015}{4032}\)
\(x.\left(1-\frac{1}{2016}\right)=\frac{2015}{4032}\)
\(x.\frac{2015}{2016}=\frac{2014}{4032}\)
\(x=\frac{2015}{4032}:\frac{2015}{2016}\)
\(x=\frac{1}{2}\)
\(=\frac{x}{1}-\frac{x}{2}+\frac{x}{2}-\frac{x}{3}+...+\frac{x}{2015}-\frac{x}{2016}=\frac{2015}{4023}\)
\(=\frac{x}{1}-\frac{x}{2016}=\frac{2015}{4023}\)
\(=\frac{2015}{2016}x=\frac{2015}{4023}\)
=> x = \(\frac{2015}{4023}\cdot\frac{2016}{2015}\)= 2016/4023