K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2016

Ta có:\(\frac{z}{x}=\frac{1}{6}\Rightarrow\frac{z}{1}=\frac{x}{6}\Rightarrow\frac{z}{2}=\frac{x}{12}\left(1\right)\)

\(\frac{y}{z}=\frac{3}{2}\Rightarrow\frac{y}{3}=\frac{z}{2}\left(2\right)\)

\(\frac{t}{x}=\frac{4}{3}\Rightarrow\frac{t}{4}=\frac{x}{3}\Rightarrow\frac{t}{16}=\frac{x}{12}\left(3\right)\)

Từ (1),(2) và (3)\(\Rightarrow\frac{z}{2}=\frac{x}{12}=\frac{y}{3}=\frac{t}{16}\)

\(\Rightarrow\frac{t}{y}=\frac{16}{3}\)

Vậy \(\frac{t}{y}=\frac{16}{3}\)

31 tháng 8 2021

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)

b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow x=18;y=24;z=30\)

31 tháng 8 2021

c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)

\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)

d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)

2 tháng 11 2019

Tính chất của dãy tỉ số bằng nhauTính chất của dãy tỉ số bằng nhauMấy bài còn lại tương tự nhé cậu

17 tháng 8 2019

hihaChúc bạn học tốt!eoeo

17 tháng 8 2019

Lời giải:

a, Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\). Mà theo đề bài: 5x + y - 2z = 28

=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{5x}{50}=\frac{x}{10}=2\Leftrightarrow x=20\\\frac{y}{6}=2\Leftrightarrow y=12\\\frac{2z}{42}=\frac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)(TMĐK)

Vậy: \(x=20;y=12;z=42\)

b, Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) ; \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\). Mà theo đề bài: 2x+3y - z = 124

=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{2x}{30}=\frac{x}{15}=2\Leftrightarrow x=30\\\frac{3y}{60}=\frac{y}{20}=2\Leftrightarrow y=40\\\frac{z}{28}=2\Leftrightarrow z=56\end{matrix}\right.\)(TMĐK)

Vây:\(x=30;y=40;z=56\)

c, Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}\). Mà x.y = 54

\(\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}=\frac{54}{3}=18\)

\(\Rightarrow\frac{x^2}{2}=18\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\}\)

Nếu \(x=6\Rightarrow\frac{6.y}{3}=18\Rightarrow6.y=54\Rightarrow y=9\)

Nếu \(x=-6\Rightarrow\frac{-6.y}{3}=18\Rightarrow-6.y=54\Rightarrow y=-9\)

Vậy: \(\left(x;y\right)\in\left\{\left(6;9\right),\left(-6;-9\right)\right\}\)

4 tháng 7 2017

Ta có: \(\frac{t}{x}\)\(\frac{4}{3}\)=\(\frac{8}{12}\)         \(\frac{z}{x}\)=\(\frac{1}{6}\)=\(\frac{2}{12}\)

          \(\frac{y}{z}\)=\(\frac{3}{2}\)

Suy ra: \(\frac{t}{y}\)=\(\frac{8}{3}\)

4 tháng 7 2017

cặn kẽ xíu nữa nha bạn mk ko hiểu 

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

24 tháng 7 2019

1)

a) Ta có: \(\frac{x}{y}=\frac{7}{13}\).

=> \(\frac{x}{7}=\frac{y}{13}\)\(x+y=60.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{60}{20}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{7}=3=>x=3.7=21\\\frac{y}{13}=3=>y=3.13=39\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(21;39\right).\)

c) Ta có: \(\frac{x}{y}=\frac{9}{10}.\)

=> \(\frac{x}{9}=\frac{y}{10}\)\(y-x=120.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120.\)

\(\left\{{}\begin{matrix}\frac{x}{9}=120=>x=120.9=1080\\\frac{y}{10}=120=>y=120.10=1200\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1080;1200\right).\)

d) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)\(x+y+z=81.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9.\)

\(\left\{{}\begin{matrix}\frac{x}{2}=9=>x=9.2=18\\\frac{y}{3}=9=>y=9.3=27\\\frac{z}{4}=9=>z=9.4=36\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(18;27;36\right).\)

Mình chỉ làm 3 câu thôi nhé, dài quá bạn.

Chúc bạn học tốt!

14 tháng 10 2019

x/2=y/5 ; y/3=z/4 ; z/6=t/11

<=> \(\frac{x}{6}=\frac{y}{15}=\frac{z}{20}\); z/6=t/11

<=> \(\frac{x}{36}=\frac{y}{90}=\frac{z}{120}=\frac{t}{220}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\frac{x}{36}=\frac{y}{90}=\frac{z}{120}=\frac{t}{220}=\frac{2x+y-z+\frac{t}{2}}{2.36+90-120+\frac{220}{2}}=\frac{-76}{152}=\frac{-1}{2}\)

Từ đó => ddc x,y,z